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Abstract. The uses of liquid helium I, liquid helium Il and gaseous helium near its critical point
in experimental investigations are emerging as an important branch of modern fluid dynamics.
This paper is an attempt to review the use of liquid helium in research on stability, transition and
turbulence. Emphasis is made on the contributid & Vinen to turbulence studies in helium II.

1. Introduction

The purpose of the papers in this special issue al tRéys.: Condens. Mattés to bring some
mature reflection to the scientific contributions of William Frank Vinen, known for reasons
obscure to his colleagues as ‘Joe’. The authors believe that few scientists active in the field of
classical turbulence are in a position to appreciate fully the remarkable discoveries and insights
which Vinen has brought to the study of turbulent flow in liquid helium II. This paper is an
attempt to remedy this defect by demonstrating, through the historical record, Vinen's seminal
role in the evolution of this subject, and the future we see before us.

Although this paper is in some sense a review of the subject, it has no pretense to
completeness. The counterflow problem itself has elicited hundreds of papers and it would
make no sense to try to discuss them all, especially since our view of the subject has changed
steadily over the years. Similarly, | have drawn heavily on past review articles (often by present
and past members of our group) to put together this article.

Cryogenic helium is important not only for studies of turbulence, but also for wind tunnel
testing and modelling of surface ships on tow tanks. This paper is restricted to the instability
and turbulence problems. Substantial accounts of these other uses of cryogenic helium are
contained in the proceedings of two conferences on the subject, Donnelly (1991a) and Donnelly
(1998), as well as a paper by Skrbek, Niemela and Donnelly elsewhere in this issue, based on
a talk by Skrbek at Vinen's recognition meeting.

It might be useful to record here how [ first met Joe Vinen. In 1955 two announcements
appeared by Wheeler, Blakewood and Lane (Whetlall955a, b) investigating flow between
concentric rotating cylinders by means of second sound attenuation. News of this experiment
reached Cambridge and David Shoenberg, adviser to Joe Vinen and Henry Hall, wrote to our
adviser, Cecil T Lane, noting that related experiments were going on at the Royal Society Mond
Laboratory. We students soon got in touch, and when | started teaching at the University of
Chicago, Henry and Joe paid a visit on a hot summer day, arriving in Hyde Park by the lllinois
Central elevated train. Thus began a scientific and personal relationship which has lasted ever
since.

0953-8984/99/407783+52$30.00 © 1999 IOP Publishing Ltd 7783
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On that first visit to the USA, Joe and Henry visited Dick Feynman at CalTech and
described their work on quantized vortices to him. Much of what both Onsager and Feynman
had predicted about quantized vortices turned out to be true. As Feynman remarked to me
later: ‘They made it real’. A little more historical insight into this achievement is contained
in section 4.2.1.

While many of us studying superfluidity recall trennus mirabilis of Hall and Vinen’s
work establishing the reality of quantized vortices, few have understood the significance of
four papers published by Vinen Proceedings of the Royal Society the turbulent flow of
helium 1l (Vinen 1957a, b, ¢, 1958). These papers were followed by a comprehensive review
on all aspects of quantized vortex lines (Vinen 1961b). This paper attempts to remedy that
situation.

2. Turbulence in cryogenic helium

2.1. Characteristics of various fluids available for turbulence studies

Most natural turbulent phenomena occur on large sdal@sd are therefore characterized by
large Reynolds numbers

UL
and Rayleigh numbers
3
o= 89ATLY 2.2)
VK

where U is a characteristic velocityy denotes the kinematic viscosity, is the thermal
expansion coefficienty the thermal diffusivity, AT stands for the temperature difference
andg is the acceleration due to gravity

Itis only inthe last ten years or so that the significance of the fact that cryogenic helium has
the lowest viscosity of any known material has been appreciated. The low kinematic viscosity
can be exploited to generate conventional classical turbulence at very high Reynolds numbers
and Rayleigh numbers. Critical helium gas, helium | (the higher temperature phase of liquid
helium) and helium Il (the phase below the lambda transition, which displays superfluidity)
are all useful in this respect (Donnelly 1991a, b). In fact the need for generating the highest
Reynolds numbers for engineering purposes can be fully met by the use of cryogenic helium.
Unlike classical fluids such as water and air, the conditions which prevail in using cryogenic
fluids allow the use of both temperature and pressure as ways of varying the physical properties
of the fluids. Thanks to the demand for large-scale refrigeration for superconducting magnets
in high-energy and nuclear physics, the facilities to use helium in large-scale experiments are
already at hand in a number of laboratories both in the United States and abroad.

A more complete discussion of the properties of helium relevant to cryogenic turbulence
research is contained in the companion paper by Skrbek, Niemela and Donnelly in this issue.
The authors also discuss a number of uses for cryogenic helium which are beyond the scope of
the present paper. These include short descriptions of helium flow tunnels, the characteristics
of liquid helium tow tanks and convection experiments in critical helium gas.

2.2. Importance of turbulence research

If one is to embark on a new program of turbulence research using cryogenic helium, then it
is significant to understand why this should be done at all. Fluid turbulence is undoubtedly
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the most outstanding problem of classical physics that has remained unsolved to this day.
It is a paradigm for spatio-temporal systems with many degrees of freedom interacting
strongly nonlinearly. The intellectual stimulus that the turbulence problem has provided
for the advancement in nonlinear science and chaos, field theoretical methods, advanced
instrumentation, numerical and computational schemes, and so forth, has been extraordinary.
On the practical side, turbulence is the ‘limiting factor’ in the design and operation of various
energy systems in aeronautical, chemical and mechanical engineering, as well as geophysics,
meteorology and other areas which strongly impact human life. For these reasons, an enhanced
ability to understand and predict turbulent flows will have a large payoff. The most eloquent
remarks in this regard were made by von Neumann (1949),

‘The great importance of turbulence requires no further emphasis. Turbulence
undoubtedly represents a central principle for many parts of physics, and a thorough
understanding of its properties must be expected to lead to advances in many fields.
...turbulence representger se an important principle in physical theory and in pure
mathematics.

... These considerations justify the view that a considerable effort towards a detailed
understanding of the mechanisms of turbulence is called for.’

These remarks are just as true today.

Turbulence is intrinsically a high-Reynolds-number phenomenon, and it has always been
clear that its quantitative understanding requires, most of all, precise data at high Reynolds
numbers. In thermal convection experiments the Reynolds number is roughly the square root
of the Rayleigh number. Thus, very large Rayleigh numbers imply large Reynolds number as
well. To quote von Neumann again:

‘... ourintuitive relationship to the subject s still too loose(and) we are still disoriented
as to the relevant factors. .’

At present, there are few opportunities for making detailed and extensive measurements
at high Reynolds numbers with the required degree of control and precision. Even those
aspects of turbulence which are understood qualitatively still rest on uncertain ground—at least
because the theory seeks to understand infinitely large Reynolds numbers. While experiments
and numerical simulations have, by and large, been carried out at low or moderate Reynolds
numbers, such measurements cannot often make the needed distinction between the predictions
of conflicting theories. While the high-Reynolds-number experiments in the atmosphere and
oceans have contributed much to our understanding of turbulence, they suffer from the fact that
experimental conditions are very hard to control, hence these flows are not ideal for settling
crucial questions. Well planned experiments which combine careful experimental control and
truly high Reynolds and Rayleigh numbers will provide fundamental new insights into modern
theories of turbulence.

3. Turbulence in helium |

3.1. High-Reynolds-number pipe flow

Both liquid helium | and critical helium gas can be utilized in achieving classical (Newtonian),
incompressible or (with the gas) compressible turbulent flows. The parameter of interest
in incompressible turbulence is the flow velocity, characterized by the Reynolds number
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Re = UL/v, whereU is a characteristic velocity anH is a characteristic length. As we
have noted, the kinematic viscosity of helium is much lower than that of water or air. For
instance, for water at 2@ and helium | at 2.18 Kywater/ VHe1 = 59, and forgir/vue | = 869.

Using helium Iit should be possible to reach Reynolds numbers comparable to the best existing
wind tunnels with a compact, relatively low-cost flow facility.

Although helium I does not suffer from non-classical behaviour (such as the superfluidity
of helium Il), the reduced scale of high-Reynolds-number experiments does have its problems.
Because the size of a helium tunnel may be so much smaller than air or water tunnels, one
must consider miniaturized instrumentation. Of primary concern is the small scale of the flow
structures such as turbulent eddies and boundary layers. Consider flow through a smooth pipe
at high Reynolds number. To be definite let us take a pipe 10 cm in diameter with liquid
helium having a kinematic viscosity= 2 x 10~4 cm® s~* flowing at a mean velocity, and
densityp = 0.146 g cnt3. For turbulent flow a viscous sublayer is generated at the walls
which scales with the friction velocity. The friction velocity is givendby= \/t/p, wherer,
the wall stress, is = Apu?/8 andx is the empirical friction factor (Schlichting 1979). The
corresponding length scale is

y= o (3.1)
and the viscous sublayer has a thickness of a few tim@$usy can be thought of as the scale
of the smallest eddies in the turbulent flow. Table 1 outlines some typical values for helium 1.

Table 1. Viscous sub-layer thickness at various Reynolds numbers.

i T u* y

(cms?l)y Re X (ergen®)  (cmsl)  (cm)

10 5x 10° 0.0132 0.0240 0.405 43x 104
107 5x10° 0.00898 1.64 3.35 857 x 1075
108 5x 10’ 0.00649 1184 28.48 .@2x 1076
10t 5x 108 0.00489 8940 247 88 x 1077
2x100 1x10° 0.00453 33100 476 B0 x 1077

Note that in helium | we can in principle use velocities of flow up to the velocity of sound
before encountering shock waves. We cannot use such large velocities in helium Il because
second sound shock waves will intrude at about an order of magnitude lower velocity. The
speed of sound in the gas is lower than in the liquid, hence the highest pipe flow Reynolds
numbers generated with cryogenic helium should be generated with helium I.

It can be seen that the length scales can range from micrometres to Angstroms. For
comparison with theories it is important to be able to probe the flow at the smallest scales.
Probing the flow will be a major instrumentation challenge. It is necessary to learn to build
micrometre or even nanometre-sized transducers to take advantage of the new range of high
Reynolds numbers afforded by helium.

3.2. Benard convection

Above about 2.2 K liquid helium is assumed to behave as an ordinary incompressible
Newtonian fluid, free from the macroscopic quantum effects possessed by its lower temperature
counterpart. One suitable test of this assumption is to compare the observed onset and nature of
hydrodynamic instabilities in helium with detailed predictions based on the stability equations
derived for ordinary incompressible fluids.
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A particularly simple and experimentally accessible hydrodynamic system is
Rayleigh—Eenard convection which we introduced in section 2.1. The use of helium | as
a medium for studying convective flows has been recently reviewed by Behringer (1990). The
critical Rayleigh numbers for the onset of convection are approximately the same in water and
in helium I, furthermore the shapes of the Nusselt number—Rayleigh humber curves beyond
critical are also similar. Niemela and Donnelly (1991) have also exploited a special case in
which the heating is periodically varied in time, a subject of current interest both theoretically
and experimentally, and for which a number of novel states of the system can be investigated
via tuning of the appropriate external parameters. Parametrically modulated systems are not
always turbulent, and are beyond the scope of this article. Interested readers can find a review
in Donnelly (1989).

In order to have a more universal measure of the state of the Rayleiglard system,
the vertical temperature difference is usually made non-dimensional in terms of the Rayleigh
number. In practice, the finite geometry of the experimental cell, as well as imperfect thermal
boundary conditions, have some influence on the correspondence between a particular value of
the Rayleigh number and the state of stress of the system, so that a more accurate representation
of the latter is to use educedRayleigh number

& =Ra/Ra, —1 3.2

whereRq, is the critical value of the Rayleigh number determined at the onset of convection.
In addition, particular fluids may be characterized by the ratio of kinematic viscosity to thermal
diffusivity, or Prandtl number

o =v/k. (3.3)

Helium I has a Prandtl number varying with the temperature from slightly less~ti42 to
about ¥4, where by comparisom is about 23 for ideal gases, 6 for water and about 200 for
silicone oils.

There are a number of technological advantages to using helium | as a working fluid, such
as the existence of a well developed cryogenic technology for precise temperature measurement
and control. Another advantage is the large ratio of thermal diffusivities of the solid (copper)
horizontal boundary plates to the enclosed fluid at very low absolute temperatures. This
enables fast and virtually unattenuated reception of high-frequency temperature fluctuations,
an extremely useful attribute, for instance, in the study of time-periodic or turbulent convective
flow. Conversely, one can also easilgply a time-dependent fluctuation of the temperature
to the fluid. This suggests a class of experiments which was mentioned above; namely, the
temporal modulation of the buoyancy force which drives the convective flow. This area of
investigation was originally motivated, at least in part, by similarities to the well known
problem of the inverted physical pendulum which can be made to execute stable oscillations in
an upright position via vertical modulation of its point of support. In the hydrodynamic
analogue, enhanced stability is achieved by allowing the temperature difference across a
layer of fluid to possess both a steady mean value and an oscillating component such that
AT(t) = AT{1+ A coswt)}. The reduced Rayleigh number for this problem is then defined
ase = Ra/Ra’™7 — 1, whereRa3"4T is the critical value of the Rayleigh number in the
absence of modulation and heRe is taken to be averaged over the modulation cycle. In
this system the conducting state of the fluid for a range of mean Rayleigh nugrkater
than Ra3"7 is made stable by this periodic modulation of the instantaneous temperature
difference. That is, while standard Rayleigleraird convection is initiated, by definition, at
e. = 0, the convective threshold with modulation is shifted to higher values of the control
parameterg, > 0.
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3.3. Drag on a sphere

One characteristic of classical turbulent flow is evidenced by the celebrated relationship
between drag coefficient and Reynolds number for flow about a sphere. At a Reynolds number
of about 2x 10° there is a sudden fall in the drag coefficient which has been known for
decades. The question of whether that fall exists in helium | and helium Il was first taken up
by Laing and Rorschach (1961) with somewhat inconclusive results. A discussion of such
early measurements is contained in Donnelly (1991a). Recently, 8ttii1999) have built

an apparatus which establishes the drag on the sphere in both helium | and helium Il by direct
measurement of the pressure distribution as shown in figure 14. The results are discussed in
section 4.7.4.

4. Turbulence in helium Il

4.1. The two-fluid model and second sound

Helium Il acts hydrodynamically as if it were a mixture of a normal fluid of dengijtyand
velocity v, and a superfluid of density, and velocityv,. The superfluid appears to carry no
entropy, and the entire heat content of the fluid must be added to convert a mass of superfluid
to normal fluid. The total density

P = pntps (4.1)
is about 014 g cn3. Under modest chemical potential gradients the superfluid can flow with
no measurable friction, and flow states can be set up in toroidal apparatus which appear to
persist indefinitely.

The normal fluid has a viscosity of order 2 and tends to be immobilized in porous
powders of size less than aboutuIn. The superfluid, however, is not so hindered, and
flows easily through the finest channels one can manufacture. Porous media, then, form
a semipermeable separator for helium 1l, passing the superfluid and not normal fluid. A
temperature differencAT across such a barrier will develop a ‘fountain pressw#, and
these variables are related to the entropy per unit rfidms

AP
AT = pS. (4.2)
Suppose liquid helium is contained in a tube with a closed end fitted with a heater, as
shown schematically in figure 2(b), and the heater supplies heaj fMkcm—2). When heat
is supplied, the superfluid will flow towards the heater, pick up heat content, transform to
normal fluid and flow away from the heater out to the helium bath. This peculiar counterflow

has no net mass flux, i.e.
j = PpUy T PV = 0 (43)

and since the superfluid has no entropy, the heat flyxssp ST v, . If the heat is switched on
and off periodically, the two fluids will execute small-amplitude counterflow described by a
standing wave of second sound. Second sound is a wave of temperature difference in helium I
which has low natural attenuation and very little dispersion. Second sound is an important tool
in turbulence research because it is strongly attenuated by quantized vortices.

The combined evidence of the above and other experiments leads to the two-fluid equations
of motion first put forward by Tisza (1938) and Landau (1941) (for a rigorous discussion, see
Roberts and Donnelly 1974)

D,
Dt

oot = Py p 4 o SVT — F, (4.4)
0
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pn% = _&VP+/)SSVT+E13 +77vzvn (45)
Dt P
wheren is the coefficient of shear viscosity atgl, is a mutual friction force between the
normal fluid and superfluid which we will discuss in section 4.2.2, and which is zero in the
absence of quantized vortex lines (see below). To these are added conservation equations for
mass and entropy

0
a—f +div(ogvs + puva) = O (4.6)

0 :

E'OS +div(pSv,) =0 4.7
and the equation for the flow of the superfluid

curly, = 0. (4.8)

These equations lead to, among other things, equations for the propagation of first and
second sound. First sound is an ordinary sound wave, exhibiting primarily fluctuations in
the total density. Second sound is unique to helium Il and represents primarily fluctuations in
temperature. Neglecting friction terms and the coefficient of expansion, the velocities of first
and second sound are

whereC is the specific heat per unit mass.

4.2. Quantized vortices, rotation, attenuation of second sound by vortices

4.2.1. Quantized vortices and rotationEquation (4.8) was at first thought to deny rotation

to the superfluid fraction of helium Il altogether, but Osborne (1950) found that the rotation of
helium Il was indistinguishable from that of helium I. Hall and Vinen (19564, b) were able to
show that, in a bucket of rotating helium II, the normal fluid rotates uniformly with the bucket
but the superfluid vorticityp = curlv, appears as a uniform array of discrete vortex lines
parallel to the axis of rotation. For most purposes, a quantized vortex line can be thought of
as a classical vortex line in the superfluid with a hollow core of radi(@bout one angstrom)

and quantized circulation

%’US-CMZEZK (4.10)
m

where the integration encircles the cakds Planck’s constant and the mass of the helium

atom: k ~ 9.97x 10~* c? s~1. In a bucket rotating at angular veloci®radians per second

the areal density of vortex lines,, is the same as the line densitymeasured as length of

line per unit volume (cm cm® = cm~2), and is given by the ratio of the vorticity of solid body

rotation to the quantum of circulation:

29 .
n, = L = — ~ 2000 lines cm™2. (4.11)
K

Vortex lines appear in more general flows as well, such as the flow between rotating
cylinders and in the counterflow experiment described above. In the latter the vortex lines
appear only after some critical heat flgx, and seem to be nearly randomly oriented with
respect to the flow as suggested in the review article by Feynman. The vortices are sometimes
described as a ‘tangled mass’, and densities up to the ordeP a¢hi@ are easily generated.

A book on the subject of quantized vortex lines has appeared (Donnelly 1991b).
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Quantized vortices can be studied by attenuation of second sound (section 4.2.3), and by
trapping of ions on the cores of the vortex lines (Donnelly 1991b). But it was Vinen's study of
turbulent counterflow by means of the attenuation of second sound that led to a little known
sequence of events in the discovery of quantized vortex lines. Vinen had obtained results by
means of second sound attenuation which led him to believe the flow had become turbulent,
and hence should have vorticity. Note that in Vinen (1957a) there is no reference to quantized
vortices whatever. But in the second paper in the sequence of four papers on counterflow
turbulence (Vinen 1957b), Vinen quotes Feynman’s famous review article (Feynman 1955).
However, in his discussion in section 6 of that paper, Vinen makes clear that the idea of vorticity
in turbulent flow led directly to the famous Hall and Vinen experiments on rotating helium.
Indeed, the Feynman paper appeared when the rotation experiments were under way. So we
may conclude that quantized vortices were on their way to discovery by experiment about the
same time as the theory was being worked out by Onsager (1949) and Feynman (1955).

The ideas behind quantized vortices and mutual friction developed rapidly in Vinen’s
mind, and by 1961 he had produced what is still one of the definitive reviews of the subject
(Vinen 1961b).

4.2.2. Mutual friction in helium 1I: the Gorter and Mellink equations of motiorGorter

and Mellink (1949), motivated by experiments on pressure and temperature differences down
narrow channels (see section 4.5.1), proposed that the extra dissipation above that owing to
viscosity alone could be adequately represented by the addition of a ‘mutual friction’ term
to the equations of motion. This idea was proposed long before the influence of quantized
vortices on superflow was remotely realized. That realization had to await the work of Vinen
and Hall. This term is now usually written as

F,s = _;OxpnAvsy Uns (412)

wherev,; = v, — vy, v, = |[{vns)], @andA is a function of7 (and in principlev,,) and is of
order 50 cm st g~1. The angular brackets denote spatial and temporal averages. This form of
F,; is useful for vortex turbulence work in counterflow channels, and is most frequently used
in the steady state with time-averaged quantities.

In the case of rotating helium 1l, Hall and Vinen (19564, b, 1961b) proposed

Fo = —(Bpups/p)t x (2 x @) — B'(pups/p) (2 X q) (4.13)

whereq = (vy — v,) andQ = ©/|2|. The component of mutual friction, then, in the
direction ofq is simply F,; = B(p;p0./p)q, whereQ is one-half the mean vorticity L

in the superfluid. The coefficien®® and B’ are called the mutual friction coefficients. The
term with B leads to attenuation of second sound owing to scattering of rotons from quantized
vortices (Samuels and Donnelly 1990) and the term Bitinfluences the splitting of second
sound resonances in rotation experiments. The theory of mutual friction is discussed in depthin
chapter 3 of Donnelly (1991b). The most current tabulations of the coefficients were obtained
by Barenghiet al (1983a). Sometimes th coefficients are replaced lycoefficients which

are defined in equation (4.43). We shall discuss these relations in section 4.3 on the Hall-
Vinen—Bekharevich—Khalatnikov equations.

4.2.3. Measurement of vorticity in helium 1l by second sourSecond sound absorption is a

very sensitive tool which measures the lenfjtbf the quantized vortex line per unit volume,

also referred to as a line density. The large cross section for vortices in second sound has its
origin in the species change of rotons scattering in the flow field of a vortex line (Samuels and
Donnelly 1990). The technique was introduced by Hall and Vinen, with Vinen publishing the
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first results on turbulent flows (Vinen 1957a). The root-mean-square superfluid vorbigity,
is defined by

ws =KL (4.14)

wherex is the quantum of circulation (Donnelly 1991b). The lower level of sensitivity is
dramatic: our least count in sensitivity Is= 10 cnT? leading tow, = 1072 s™1. On the

higher end we have recorded valuesto 50 000 st in turbulence produced by a towed grid

(see figure 22) One can appreciate, however, that there is a limit to the use of second sound.
The line density is deduced from the resonant amplitidé second sound:

4r Ao [ A
LA 0<_0_ > (4.15)
kB A

whereAq and Ag are the resonant half-width and amplitude in the absence of vortex lines,
owing to absorption of second sound by the walls, 8nid the coefficient of mutual friction
(Barenghiet al 1983a). In typical experiments at 1.65 Kg = 8.77 Hz,B = 1.44 and

A _ (1 + ‘”_) ' (4.16)
Ao 76.5

sothatfow, = 10°s™1, A/Ay = 7.1x 102, afew per cent of the original amplitude. The peak

is also broadened since the proddet is known to be constant, at least for modest reductions

in A. Broad peaks at low amplitudes are very hard to fit accurately, and so at a vorticity of this
magnitude the second sound method becomes limited in its utility. Nevertheless, the range of
five orders of magnitude of vorticity measurement is an impressive achievement.

Recently, Stalp (1998) has developed more accurate ways of analysing second sound
attenuation data, and has produced a more general formula which reduces to the one developed
by Vinen at low levels of attenuation.

One should note also that it is possible to measure vorticity in more than one direction.
You (1993) was able to measure attenuation of second sound azimuthally and axially in a
Taylor Couette apparatus

4.3. The HVBK equations of motion

The connection between superfluidity and fluid dynamics dates back tavthéuid model

of Landau and Tisza discussed in section 4.1. The link was reinforced by the discovery of
quantized vortex lines in rotating helium. Attempts were then made to generalize the original
two-fluid model into a complete set of fluid equations which is powerful enough to describe the
motion of superfluid helium in the general case in which quantized vorticity is present in the
flow (Hall and Vinen 19564, b, Hall 1960, Vinen 1961b, Khalatnikov 1965, Hills and Roberts
1977). Much effort went into understanding various physical effects, such as mutual friction
(Barenghiet al 1983a, b, ¢), which these equations should describe.

Insection4.2.1, we have seen that the simplest flow of helium Il which contains vortex lines
is solid-body rotation. This is an example of laminar vortex flow. There are only a few laminar
vortex flows which have been investigated: flow in an annulus, Taylor—Couette flow, flow in a
driven cavity. These flows have been studied using a generalization of the two-fluid equations
which allows for non-zero, macroscopic superfluid vortieity These equations are called the
Hall-Vinen—-Bekharevich—Khalatnikov (HVBK) equations, and generalize Landau’s equations
to include both the mutual friction and the tension force in the vortex lines which is responsible
for vortex waves. The basic idea behind the HVBK equations is that we consider fluid particles
large enough to be threaded by a large number of vortex lines which are essentially aligned
along the same direction. These fluid particles are then treated as a continuum (see figure 1).
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A

Figure 1. Afluid particle threaded by vortex lines in the HVBK model. The scalef the particle
of fluid is greater than the intervortex spacing.

Assuming incompressibilityv - v, = 0, V - v, = 0) the large-scale velocity field, and
v, obey the equations

81);, +v, Vv, =—-Vp, + v, Vv, + %Fm (4.17)

00 oy Vo, = —Vp + T — "B, (4.18)

at P
wherep, andp, are effective pressures,

Vpy = 2P+ svr (4.19)

P Pn

Vps = %VP - SVT (4.20)
v, = n/p, is the normal fluid’s kinematic viscosity,

T = —vyws X (V X @y) (4.21)
is the tension force,

c=v, —v; — V;V X W (4.22)

Fy = (GB)o; x (w, x €) + (3B )w, x ¢ (4.23)
is the mutual friction forceB and B’ are mutual friction coefficients,

ws =V X vy (4.24)
is the (large-scale) superfluid vorticiy, = w;,/|w,| and

vy = (k/47) 109(Ajines /@) (4.25)
is the vortex tension parametaxr,is the quantum of circulation and is the vortex core

parameter.
Equations (4.17) and (4.18) have three interesting limitg. 4 T) thenp;/p — 0 and
(4.17) reduces to the classical viscous Navier—Stokes equatibnifO thenp, /0 — 0 and
(4.18) reduces to the equation for a pure superflow; finally, if we set Planck’s constant equal to
zero,T = 0 and the pure superflow equation reduces to the classical inviscid Euler equation.
The HVBK equations have been used to study helium Il inside a simple rotating cylinder
and the Couette flow of helium II. In the core of the rotating cylinder the vortex lines are all
parallel to the axis of rotation, s& x @, = 0, there is no tension owing to bending and
the HVBK equations assume a particularly simple form. In the core of Couette flow, on the
contrary, the vortex lines can bend and one can really test the validity of the HVBK model.
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4.4, Taylor—Couette flow in helium Il

The potential of Taylor—Couette flow to investigate the dynamics of superfluid helium was
recognized early on by Chandrasekhar and Donnelly (1958). Unfortunately, their pioneering
attempt was premature and missed an important physical ingredient—vortex tension—which
was not known at that time. Another unsuccessful attempt was carried out by Snyder (1974).
Progress continued on the experimental side but, without a theoretical model, it was not possible
to identify the observed instabilities with certainty, and attempts to compare results obtained
using different techniques or different apparatus failed (Donnelly and LaMar 1988). A step
forward occurred when Barenghi and Jones (1987) discovered the key role played by vortex
tension. Barenghi’s (1992) prediction of the critical velocity of the transition from Couette flow

to Taylor vortex flow was confirmed by observations (Swanson and Donnelly 1991, Bielert and
Stamm 1994) and contact between theory and experiments was achieved for the first time. The
identification of this instability opened the way to understand flows and transitions observed
at lower and higher velocities and stimulated more work on the problem. These advances
established the general usefulness of the HVBK equations beyond the case of simple rotation
for which they were formulated.

4.4.1. Classical Couette flow.In the classical Taylor-Couette problem a liquid of constant
densityp, and kinematic viscosity, flows between two concentric cylinders of inner radius
R1, outer radiusk,, gaps = R, — R1 and height: > §. Inthe simplest configuratioh< Rj,
the outer cylinder is held fixed and the inner cylinder rotates at constant angular vélocity
measured by the Reynolds numtir = QR;8/v.

The following sequence of flows and transitions takes places at increasing val2es of
At small rotation rate the motion of the fluid is purely azimuthal around the inner cylinder
(Couette floy. Using cylindrical coordinates ¢, z the velocity isvg = vod, Where is the
unit vector alongp,

vo= Ar +B/r (4.26)
A=—-Qn?/(1—1n? B=QR?/(1—n? and n = Ri/R>. (4.27)

(It is important not to confuse thd and B coefficients with the coefficients of mutual
friction introduced in section 4.2.2.) Whé&nhequals a critical valu®,.,,, the viscous forces
cannot hold back the unstable stratification of angular momentum any longer and Couette flow
becomes unstable to axisymmetric perturbations of axial wavenumbér,,,; ~ 3/8. The

new flow pattern has the form of toroidal cells of wavelengta 27 /k ~ 25 superimposed

upon the azimuthal motioriTaylor vortex floyy. When a second critical velocit®s.;.s IS
reached, the boundaries of the Taylor cells start to oscillate, the flow pattern loses its axial
(m = 0) symmetry and becomes time dependent with non-zero azimuthal wavenumber
(wavy modes At higher velocities other transitions occur and the flow becomes more complex
and eventually turbulent, but Taylor cells are still visible.

4.4.2. Appearance of the first vortex lineAt small values o2, helium Il is in a vortex-free

state. Vortex lines appear at a critical angular velo€ity The nucleation of the first vortex

line is still a major unsolved problem of superfluidity and requires a microscopic quantum
description, but some progress has been made using more general arguments. The first
argument, introduced by Hall and Vinen (1956b), and further developed by Donnelly and Fetter
(1966), is based on thermodynamics and states that the first vortex appearg wheid. is

a minimum, whereF is the free energy and is the angular momentum. The background of

this assertion is contained, for example, in sections 26 and 34 of Landau and Lifshitz (1969).
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Swanson and Donnelly (1987) applied the theory to Couette flow and found that (by symmetry)
the first row of vortices should appear in the gap at the critical velocity

Q= (2c/m R28)[IN(28 /7 ap) + 1. (4.28)

The measured critical velocities, however, are two to three times higher and show a strong
temperature dependence which is abser@jn(Swanson and Donnelly 1991, Bielert and
Stamm 1994).

The second argument, proposed recently by Jehaq1995), is based on fluid dynamics
rather than thermodynamics. Consider a transition from a state characterized by the velocity
fields v, andvy just after the transition. The transition is possible only if the energy of the
configuration before transition exceeds the energy after, i.e. if

E,+E,> E, +E,. (4.29)

From the configurations of the proposed transition one can calchijateE andE,. To find

E, requires some assumptions about the nature of the transition. The first assumption is that
the appearance of a vortex happens on a very rapid quantum timésegle = 10713 5)

so that momentum is conservémtally at each point in the fluid. The second assumption

is that, at the moment of creation, the vortex is not coupled to the walls, so that no angular
momentum is transferred to them. Immediately after the formation of the vortex, adjustments
to the pressure distribution, and hence to the momentum distribution, will occur on the sound
speed timescale. Further adjustments will occur on the viscous diffusion timescale (typically
minutes). The quantum timescale is much faster than these effects, so that they do not affect
the process of formation, but only what is subsequently observed. Local conservation of
momentum then impliep, v, + p;v; = PV, + ps0s. When this theory is applied to Couette

flow it is found that, a2 is gradually increased, the first transitions involve the creation of
quanta of irrotational superfluid motion. Wh@nreaches the critical value

Qo= (1+ ps/pn)QS (430)

the strength of the virtual vortex is large enough that the vortex-free state becomes unstable
and real vortex lines appear. This result agrees with both the magnitude of the observed critical
velocity and its temperature dependence in the temperature radge<17 < 7,. Below

~1.85 K the theory fails, but this is expected, because the mean free path of the excitations
which make the normal fluid becomes as large as the container and local conservation of
momentum does not apply. What happens below 1.85 K is therefore still an open question.
Further support for the new theory comes from the observation of predicted hysteresis effects
(Mathieuet al 1976).

4.4.3. Azimuthal Couette flowlf Q is increased abov®y, more and more rows of vortices
appear quickly, until a uniform array of vortices aligned in thédirection fills the gap. The
small-scale flow pattern is very complicated, but the large-scale superfluid velocity field is the
same as the Couette profilg of the normal fluid. A suitable description of this large-scale
flow which ignores the individual vortex lines is the HVBK model.

Applied to Couette flow, equations (4.17) and (4.18) admit the isothermal Couette solution
v, = vs = vo Which corresponds to an array of vortex lines aligned along-tiieection with
areal density

no = 2|Al|/x. (4.31)
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4.4.4. Transition from Couette flow to Taylor vortex flowWhen reaches a critical value

1, the Couette state becomes unstable to axisymmetric perturbations of axial wavenumber
k1 and toroidal motion appears (Barenghi 1992, Henderson and Barenghi 1994)s
strongly temperature dependent. In the high-temperature kmit— 4., because
helium Il — helium I. To understand the instability at lowErit is important to remember

that in the classical case the stability boundary in(fek) plane looks like a parabola with
vertex at the base, = ky.s ~ 3/6 andQ — Q1.4,5; that is to say, the Taylor cells are
square. Consider now helium Il in the linfit — 0. It can be shown (Barenghi and Jones
1987) that the Couette solution of the pure superflow equation is unstable to long wavelength
perturbations of the vortex lines and the stability boundary looks like a parabola with vertex at
the origin €; — 0 ask — 0). In practice the cylinders have finite height so that the critical
wavenumber is ndt = 0 but some small finit,,;,,. What happens at atemperature between 0
andT; depends on the relative proportionssgfandp,. Just belowr;, p,/p < 1 and helium’s
dynamics is dominated by the normal fluid, which, sip¢go <« 1in (4.17), behaves almost

like a classical Navier—Stokes fluid. When= Q1. the normal fluid would like to overturn
Couette flow into Taylor cells on the length scale= 27/ k145, &~ 268, but the vortex lines

are very stiff on this short scale—remember that the stability boundary for a pure superflow
increases rapidly with. A compromise is reached between the two effects and the instability
sets in at higher velocityQ2; > Q1.455) and smaller wavenumbeét; < ki..,5), thus making
helium Il in this region more stable than helium I. If the temperature is reduced the balance
is struck at lowe2; more in favour of the superfluid: the Taylor cells appeaRat Q1455

and are very long axially. F&F < 2 K the critical velocity drops rapidly because of the rapid
decrease of the normal fractiop,(p ~ 0.5 atT ~ 2 K).

The experiments of Swanson and Donnelly (1991) and Bielert and Stamm (1993) confirm
this scenario.

The HVBK equations have also been tested in the axisymmetric nonlinear régime,
(Henderson and Barenghi 1994, Hendersbal 1995). It is found that the structure of the
Taylor cells is different from classical Taylor vortex flow. The observed values of the torque
induced on the outer cylinder (Donnelly 1959) compare well with the theoretical predictions.
Estimates of the second sound attenuation are more difficult, but still in order of magnitude
agreement with the measurements.

4.4.5. Wavy modes.Wolf et al (1981) observed many transitions at large rotational velocity
which have not been identified yet. They are possibly related to non-axisymmetric modes of
the Couette solution which become unstableCtos 2, (Barenghi and Jones 1988). To make
contact with the experiments it will be necessary to perform a proper linear stability analysis
of nonlinear Taylor vortex flow with respect i@ # 0 modes. This regime is very much open

to further work.

4.4.6. Turbulent Couette flow.Bielert and Stamm (1994) found that the turbulent Couette
flow of helium Il (2 ~ 40€2,) is similar to classical turbulence in two respects: axisymmetric
Taylor cells are still visible, even if the flow inside each cell is turbulent, and the Taylor cells are
square, not elongated axially. Other experiments confirm the similarity between the isothermal
turbulent flow of helium Il and classical turbulence (Barengthal 1995a).

There is no direct theoretical evidence that the normal fluid and the superfluid are coupled
at high Reynolds numbers, because we do not know whether the HVBK equations, which have
been successfully tested at small Reynolds number, are still applicable in the turbulent regime.
This is still an issue open to investigation. Nevertheless, we can try to extrapolate what we
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know at the relatively small values of Reynolds number used in Taylor-Couette experiments.
The HVBK equations lead us to consider the relative importance of the tensionfosoe

the mutual friction forceF;,; in the superfluid equation of motion, at high Reynolds number.
For if T is small compared t#),; then the only significant forces acting on the superfluid are

the pressure and mutual friction. The pressure force on the superfluid is the same as that on
the normal fluid and mutual friction will have the effect of trying to lock up the two fluids on
sufficiently large length scales. Consequently, a small value of the ratib| ¢fF;,,| would
support the concept.

We assume that the temperatdrés high enough that helium’s dynamics are essentially
dominated by the normal fluid equation, and the superfluid equation acts only as a correction.
In Couette flow, for example, at high, the normal fluid equation determines both the flow’s
pattern (Taylor cells) and the magnitude of the critical Reynolds number.

Now let A be the length scale of the chann®lthe magnitude of the velocities az}
the amount of superfluid vorticity. TheR ~ v,Q,;/A andF,; ~ p/p,2(V — vy /1) if we
neglect the smalB’ term. Apart from a very small region in the close vicinity of the lambda
point, the mutual friction coefficier® is of order unity, and the ratio of the magnitudes of the
tension force and the mutual friction force reduces to

IT| ~ Bp/ps ~ &i (4.32)

|Fas|  Re(1—(B/Re))  p Re

Here 8 = v,/v, is a parameter of order unity at typical temperatures, and we define the
Reynolds number aBe = V1 /v,. Itis apparent from (4.32) that at large Reynolds numbers
|T|/|F,s| — 0 and thus the vortex tension term is negligible compared to the mutual friction.
We conclude that the superfluid is essentially dragged along by the normal fluid via mutual

friction.

4.4.7. Rotations of the outer cylinderThe stability of Couette flow under rotation of theter
cylinder, on the contrary, is still an unsolved problem. Unlike what happens in a classical fluid,
for which rotations of the outer cylinder stabilize Couette flow, helium Il undergoes a transition

if the velocity of the outer cylinder exceeds a critical value. Heikkila and Hollis Hallet (1955)
and Barenghi and Jones (1987) discovered th@t at 0 any rotation of the outer cylinder is
destabilizing, but a study of the problem at the finite temperatures relevant to the experiments is
still missing. Flow between counter rotating cylinders is discussed by Barehghi1995b).

4.4.8. Couette flow at small aspect ratiolf the height of the Couette apparatus is reduced to
the gap’s size, one obtains a simple cavity. Recently, Henderson and Barenghi (1999) studied
the flow of helium Il in this simple configuration using the HVBK model. They found the
surprising result that the normal fluid, at some values of parameters, flows in the opposite
direction to what a denser fluid would do.

4.5. Counterflow turbulence

4.5.1. Leiden measurementsThe early history of counterflow turbulence begins with
investigations at Leiden University on the thermal conductivity of liquid helium. Keesom and
Keesom (1936) measured the thermal conductivity of helium | in the apparatus of figre 2(
The liquid was contained in a cylindrical layer L of diameter 3.6 cm and depth 0.5 cm. The
top and bottom of the cell consisted of copper blocks A and B, each containing a heater and
thermometer. AT = 3.3 K the authors obtained a thermal conductivity comparable to that of
gases at ordinary temperatures. The thermal conductivity of helium Il, on the other hand, is so
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great that a capillary tube must be used to observe a temperature gradient. The first systematic
measurements were by Keesetral (1938) using the apparatus of figurdR(

E
D
d
. i
it} c U
—— B c
odiiagaangl 1y
A
b
B I
a !
A |

Figure 2. Apparatus for determiningaj the thermal conductivity of helium | (Keesom and Keesom
1936); p) the relationship between heat flux and temperature gradient in helium Il (Kestsalm
1938). The components are discussed in the text.

A, B, C and D are copper pieces containing chambers a, b, ¢ and d filled with liquid
helium through metal capillaries. Capillaries of different width and length were used between
B and C. B and C also contained thermometers and a heater was attached to A. The authors
found that the heat conductivity has a pronounced maximum at 1.7-2.0 K with conductivity as
high as 810 calC~* cm~! s71, i.e. more than 800 times that of copper at room temperature,
and 13 x 10’ the value obtained for helium |. Keesoat al called helium Il ‘supra-heat
conducting’, with good justification.

It is interesting that the devices illustrated in figure 2 are in use today in more or less
the same form. The helium | cell appears today a€ndBd convection cell (see section 3.2
above). The so-called ‘counterflow’ apparatus of figurg) 2(ill represents one of the most
important and fundamental techniques for studying the flow of helium II: a heat source, and
thermometers to measure the temperature gradient.

Readers interested in following the evolution of experiments on counterflow turbulence
over the years might consult Atkins (1959), Wilks (1967), Donnelly (1967), Tough (1982),
Swanson and Donnelly (1985) and Donnelly (1991b).

Much of the study of quantum turbulence is done in steady-state counterflow. The time and
cross sectional averages of (4.4) and (4.5) in steady state (the ‘mutual friction approximation”)
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are, to first order,

0= —(ps/P)VP) +psS(VT) — (Fys) (4.33)

0= —(0a/P)(VP) = psS(VT) + (Fys) +1(V?v,) (4.34)
where brackets denote time and cross sectional averages. Adding (4.33) and (4.34), we find

(VP) = n(V?v,) (4.35)

which suggests that the pressure gradegtin turbulent superflow is not much different to
that in laminar (Poiseuille) flow. This is known to be roughly true, and is called ‘the Allen
and Reekie rule’. The Allen and Reekie rule is not quite obeyed, as detailed in section 4.1 of
the review by Tough (1982), but it did prompt Gorter and Mellink (section 4.2.2) to propose
mutual friction!

With a laminar mean flow assumption, we have for the pressure gradient

Gnv,
d2
wheregG is a factor know theoretically for Poiseuille flow for each channel shapel amthe
channel size. The thermodynamic potential gradient per unit mass, usually called the chemical
potential in the helium Il literature, vanishes in laminar flow,
VP,
0

consistent with dissipationless flow for the superfluid. Thus the laminar flow temperature
gradient is

VP, = — (4.36)

VP Gnv,
VT, = ~—L = 2% (4.38)
oS pSd?
In turbulent flow, the total temperature gradient is
VT =VT, +VTr (4.39)
whereV Ty is, neglecting the increase WP above the laminar value,
F}'LS‘
VTr = (4.40)
Sps

and sinceF,, varies roughly ass®, the neglect of the extra pressure gradient becomes

ns?

guantitatively reasonable for large flow rates. The chemical potential gradient is given by
Fns

Ps

This shows that dissipation owing to vortices produces a direct change in chemical potential.

The connection of the mutual friction coefficients to line length per unit volume may be
seen by a simple analogy. In uniform rotation, from (4.41), the dissipative tefiy plarallel
to v,; has the magnitud®p, 0,4 L/2p, wherek L is the vorticity X2 in steady rotation. For
turbulent flow the assumption is that mutual friction acts in the same manner on each segment
of vortex line in a tangle as it does on an array produced by rotation, but that in second sound
attenuation, for example, an average of one-third of the vortex line segments in the tangle
will be oriented parallel to the second sound propagation direction and not detected. Thus for
isotropically-oriented vortex lines, the magnitude of the dissipative part of the mutual friction
term can be written as

Vi =— (4.41)

Fos = =22 2 Lo, 4.42
2y 3L (4.42)
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whereLo = (L). For a more careful discussion of the relationship between second sound
measurements and the properties of the tangle, see Swanson and Donnelly (1985) or Stalp
(1998).

We note here for future reference that in placeBaind B’ authors often use

a = Bp,/2p o' = B'p,/2p. (4.43)

Indeeda can be used as a convenient measure of temperature. The upper and lower
abscissae of figure 7 show the correspondence betWesrt.

4.5.2. Vinen’'s theory. A model for the dynamics of the tangle of quantized vortex lines,
developed from the ideas of mutual friction, was introduced by Vinen in a classic series of
papers (Vinen 1957a, b, ¢, 1958). This theory considers a spatially homogeneous distribution
of vortex lines whose time rate of change is determined by competing growth and decay
processes. Vinen derived the growth term by dimensional analysis and modelled the decay
process after the decay of classical turbulence in the Kolmogorov cascade. He obtained

dL B P 3 X2K
— = 1=, L¥2 - 22 4.44
dr X 2 p v 27 ( )
wherey; and x, were undetermined parameters at the time.
In a steady stat&lL /dr) = 0 and the equilibrium line density is

Lo = yzvss (4.45)

wherey = nBp,/kpx2. Thev? dependence ok predicted by Vinen's model is roughly
correct above the critical heat flux (see section 4.54).which contains the temperature
dependence, had to be determined experimentally sine®d x, were not well known.

If v,, is set to zero, the free decay of the tangle is described by

L
L) = 7 (4.46)
1+ LO(XZK/ZT[)[

whereL is the initial vortex line density. It is known that this scaling does not persist at large
times (see figure 23 and section 4.7.3).

Writing L/Lo = £, we have from equation (4.44)

de
5= Kqv2 0321 — ¢Y?) (4.47)
where
B2 2 2
K= %1 <&> m (4.48)
4 x2\p/) h

Applying this equation to the build-up of mutual friction when a steady heat current is
suddenly switched on, Vinen noted tlias simply equal to the ratio of the mutual friction at any
instant to the final equilibrium value of the mutual friction. Therefore, from an experimental
curve showing the build-up of mutual friction when a heat currentis switched on, it was possible
to deduce values ofiddr and? as a function of time for a given value of,, and these values
could then be used to test the validity of equation (4.47). In practice, plots were magjeof d
against’®?(1 — ¢%2) which were found to be straight lines within the experimental error, and
this constitutes experimental evidence in favour of the dependendgdf an ¢ indicated by
equation (4.47). From the slopes of these lines, valugs;aff, were obtained. For a given
temperature these values &f v2, are found to be proportional to’,, so that the form of
dependence of@ddr onv?, indicated by equation (4.47) was also confirmed.
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Schwarz (1988) (see section 4.6) has used the laws of vortex dynamics to study the
dynamical balance between growth and decay and finds an equation analogous to Vinen's.
The advantage of Schwarz’s derivation is thatand x, are no longer unknowns, but are
derived directly from the laws of vortex dynamics.

A comparison between the decay of counterflow turbulence and towed grid turbulence is
shown in section 4.8.3.

4.5.3. Critical heat flux. Vinen (1958) observed that a critical heat flux, and hence a critical
average counterflow velocity. is necessary to generate an observable quantity of vortex line.

He did this with second sound attenuation, and the existence of a critical counterflow velocity
has been confirmed since by second sound attenuation, temperature and chemical potential
gradients, as well as ion trapping (Tough 1982).

4.5.4. Dependence of line density on counterflow velocithe dependence of the average
line Ly uponv,, near critical is complicated, but observers generally agree that beyond the
critical region

Lo~ yz(vns - UO)Z (449)

wherey anduvg are functions of temperature (do not confugevith v.). The precise values

of y andvg have been the subject of controversy (Donnetlgl 1981), but the turbulent state
classification of Tough (1982) described in section 4.5.5, the recent work on scaling (Schwarz
1988, Swanson and Donnelly 1985) described in sections 4.5.6 and 4.5.7, and the measurement
of the tangle anisotropy described in section 4.5.9 combine to resolve apparent experimental
discrepancies.

4.5.5. Tough classification of turbulent state§.ough (1982) has analysed the vast quantities

of steady, uniform counterflow data and found that there is one feature of the channel geometry
which is crucial in determining the phenomena, the cross sectional aspect ratio. (Apparently
the channels used are long enough for the length-to-width ratio to be of little importance,
at least well beyond critical). For low-aspect-ratio channels (e.g. nearly square or circular)
there are two turbulent states, state Tl at low heat fluxes and state TIl at high heat fluxes,
which are separated by a rather complicated transition (see section 4.5.13) and have different
characteristic values gf. For high-aspect-ratio channels there is only one turbulent state,
state TIII, which has values of similar to state TIl. Tough also designated the turbulence

in pure superflow as state TIV, a state which has mass flow and presumably a flat velocity
profile. From the latest data (Opatowsky and Tough 1981) it appeans thatate TIV agrees
quantitatively withy in state TIl (Awschalonet al 1984, figure 1b). The critical velocities for
these different flows are designated, v.,, etc.

4.5.6. Vortex dynamics and scalingFor many years scaling in counterflow turbulence was
unknown. This is in part due to the fact that there is no mass flow in counterflow experiments
and familiar ideas such as the Reynolds number, being the ratio of inertia to dissipation, are
unavailable. The topic is subtle, but is summarized in section 7.2.2 of Donnelly (1991b),
based on original work by Swanson and Donnelly (1985). What emerges is a dimensionless
tangle-averaged logarithmic factor

lo~ —In(aLy?. (4.50)
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Defining B8 = «lo/4m (with dimensions of kinematic viscosity), the dimensionless applied
counterflow velocityy (analogous to a Reynolds’s number) upon which tangle properties will
depend is

Vpsd
5

V= (4.51)

4.5.7. Implications of scaling. There are two major implications of the scaling of tangle
properties withV, i.e. the scaling of critical velocities with channel size and the relationship
between line density and counterflow velocity (for high velocities). This relationship has
further implications, for example the scaling pfwith channel size and the temperature and
heat flux dependence of the Gorter—Mellink law exponent.

We can define a dimensionless critical velocity from (4.51),

ved

V.=

Be
wherev, and 8. are the values of,; and 8 at the critical velocity. In figure 3 we show
measurements af.d, the second critical velocity in small aspect ratio channels scaled by the
channel size (ignoring the logarithmic parameter), anggf.e. the same data scaled according
to (4.52). We can see substantial improvement in agreement between measurements in various
sized channels with the inclusion of the logarithmic parameter. Similar improvements in
agreement can be seen for other critical velocity measurements, see Swanson and Donnelly
(1985).

(4.52)
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Figure 3. Second critical velocity in small aspect ratio channels at several temperatures as
determined by various investigators. The upper plot is scaled by channel size, whereas the lower
plot includes the logarithmic parameter as in (4.52). Until recently there were no theories of this
transition. However, recently Melotte and Barenghi (1998) have argued that the transition TI-TII
indicates the beginning of turbulence in the normal fluid, so that Tl is a region of turbulence in the
entire fluid.



7802 R J Donnelly

400

300 . )
— [ ’
o~ | |
=3 Oom
= 200 . g O
" v o e ]
~ a n
N o : & L]
ot o
v

Yok (8,,-1)

Figure 4. y, as a function of temperature. The upper plot shewand the lower plot showg,
scaled by the implicit channel-size dependence after Swanson and Donnelly (1985).

At high counterflow velocities, the boundary region becomes less important for
determining average tangle properties, dpcheed not be proportional 2. Then (4.52)
can be written as

LY? = ;—v (4.53)

The dependence df, onv?2, can thus be derived simply from the scaling of vortex dynamics
in the approximation that the logarithmic parameter is constant. Inclusion of the logarithmic
parameter gives a remarkably good fit to the data, as can be seen in figure 5.

We can make a linear approximation of (4.53) about seppe= v,,0, Wherely has the
valuel,, finding

Lg® =y (vas — v0) (4.54)

wherey = 4nu;/kc(lyo — 1) andvg = v,50/ L0, See figure 4. The parametegy which
appears in this expression fbp is the same as the appearing in (4.49). It has no physical
significance. Its presence arises naturally due to logarithmic scaling, and its value depends on
where one makes the linear approximation as well as on temperature and channel size. Below
we will use a nonlinear power-law approximation to (4.513}/,2 = bv!’,, which is good over
a much wider range than the linear approximation.

The logarithmic parameter also has important implications for the Gorter—Mellink
relationship between the temperature gradient and the applied heat flux. Let us amend the
usual Gorter—Mellink rule to write

VTr = —F,s/Sps «x g™ (4.55)
wherem = 3 is the traditional value. Swanson and Donnelly (1985) show that it is possible
to use a nonlinear power approximation to (4.53),

LY2 o (4.56)

ns
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Figure 5. L(l)/zd as a function ob,; at 1.7 K. The data are from Martin and Tough (1983). The

line represents (4.53). For details see Swanson and Donnelly (1985). The scaling shown here is
also implicit in the Schwarz simulations as discussed in Schwarz (1988), which gives not only the
scaling but also the magnitude of the mutual friction.

which is valid over a wider velocity range than the approximation (4.54). This leads to the
resultm = 2n +1in (4.55). Swanson and Donnelly (1985) go on to show that (4.55) is a good
approximation about some heat flyg with m a function of temperature ang as shown in
figure 6. These values are consistent with a variety of experiments (Ahlers 196%t Bbn
1978, Swanson and Donnelly 1985) that have roughly determinetihe theory leading to

this result breaks down as grows, essentially because the core becomes comparabé@to

but it is probably satisfactory while is less than 4.

4.5.8. Axial homogeneity of vortex line density in a counterflow chanrighe vortex line
density in turbulent counterflow is axially homogeneous in a properly designed channel (see
section 4.2). The axial homogeneity is consistent with the Vinen equations which imply that
the tangle is sustained by the local valuevgf. Further evidence for local creation has been
provided by shock-wave experiments of Barenghi (1982). Barenghi's experiments, done by
attenuation of second sound allowed him to conclude that vortex lines can be created by shock
waves and that the velocity at which the initiation of vorticity is propagated is the velocity of
second sound.

4.5.9. Transverse homogeneity and anisotropy of the tanghschalomet al (1984) have
reported that the vortex line densityis independent of transverse position over at least 80% of

a channel of width 1 cm. This observation was made by ion trapping in the cores of quantized
vortices. In the same experiment, it is reported that the normal fluid velocity profile is uniform
over at least 80% of the channel and the normal fluid is certainly not in Poiseuille flow. Indeed,
it appears that turbulent counterflow is more or less ‘plug flow’.
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Figure 6. The Gorter—Mellinkm as a function of temperature and heat flux. From the top of the
figure the lines are for heat fluxes of 10 W tfp 1 W cn?2, 0.1 W cmi~2, 10 mW cnt?, and
1 mW cni 2. After Swanson and Donnelly (1985).

The standard assumption since the work of Vinen (1957a, b, ¢, 1958) has been that the
vortex line density is isotropic. We find by simultaneous transverse and axial measurements
that the line density distribution is substantially flattened in a direction perpendicular to the
axial flow (Wanget al 1987). Figure 7 shows the ratior /L 4, which would be unity for an
isotropic distribution and 0.5 if all of the lines were perpendicular to the flow. lAeres the
line density measured transverse to the flow axis,lané the line density measured parallel
to the counterflow axis.

4.5.10. Drift of the tangle. Vinen (1957c) assumed that the vortex lines, being an excitation of
the superfluid would have velocity and thus move toward the heater. There have been some
early reports that the tangle moves toward the cold side of the channel. These are probably
wrong. Barenghet al (1983a, b, c) suggested that combined temperature gradient and second
sound measurements could yield the ratio

|<vL - Us>|/|<vn - Us>| = ULS/Uns- (457)
This measurement was carried out by Wang (1987), who fayngt v, for temperatures in
the range 1.27-2.1 K (see figures 7 and 8), in accordance with Vinen’s original assumption.

4.5.11. Fluctuations. The intrinsic fluctuations of the vortex line density are quite weak, and
early reports of the nature of the fluctuations were probably wrong. On the other hand, the
Vinen equations can be interpreted in a way which gives the response to induced fluctuations of
vus- An experiment to test this prediction by Barenghal (1982) was carried out using a noise
generator to modulate the heater driving the flow. Their results fully confirm the predictions
of Vinen’s equations except perhaps very close to the lambda transition.

4.5.12. Combined rotation and counterflonCombined rotation and heat flow is a relatively
new area of investigation. Prior to the investigation discussed in this section it was assumed
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Figure 7. The ratioLy /L4 of line density measured as a function of temperature (Wrag
1987). These results were also calculated by Schwarz (1988) from simulations as shown by the

full circles.
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Figure 8. The ratiov; s /v,s as a function of temperature. The bars represent the data of #/ahg
(1987) (the range shown is three standard deviations). The full circles are the predicted vortex drift
velocities by Schwarz (1988).

(from earlier experiments) that the ordered array of vortex lines produced by steady rotation
and the disordered tangle produced by counterflow preserved their identities in a combined
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experiment. Measurements at Oregon with improved sensitivity by Barengti(1983c)
showed that the picture just described is far from true. The observations consisted of measuring
the amount of vortex line present owing to counterflow or rotation alone using second sound
attenuation, and comparing the observed line density with what would be expected if the two
sources of vorticity simply added. The results are complicated, but appear to be relatively
simple in two limits.

(i) Limit of large line densityL ; due to heat, slow rotation. Here the effect of rotation is
not simply to add line densit§ ; = 2Q2/K . Instead the tangle appears to be polarized to
accomplish the rotation. The effective polarization increases with rot&iby analogy
to a gas of magnetic dipoles in a magnetic field. The results scald.wijth 5 by analogy
towH/kT. Thus rotation appears to produce alignment in the tangle, as does a magnetic
field for dipoles, and. ; appears to play the role of disordering heat bath in the statistical
mechanics of superfluid turbulence.

(i) Limitof fast rotation and small axial heat flux. Any rotation eliminates the critical velocity
v.. Inthis limit two critical counterflow velocities appeay; andv,,, which scale aQ?/2.
The first appears to correspond to the Donnelly—Glaberson instability (see section 4.7.5):
excitation of helical waves by the counterflow on the vortex lines induced by rotation. The
second appears to be a transition to turbulence, with the rotation-induced array becoming
a vortex tangle.

4.5.13. Dynamics of the TI-TII transition.Recently there has emerged an important insight
into the nature of the TI-TlI transition in circular pipes. Tland Tll are superfluid vortex tangles

of much different vortex line densities, Tl being considerably larger. We have known since the
pioneering experiments of Vinen that if the heat filugxceeds a critical value, a vortex tangle

is created. The vortex line density of the tangle can easily be determined by measuring the
attenuation of second sound across the channel, or temperature gradients down the channel, as
discussed above. The TI-TII transition is most easily observed in narrow channels. Tough’s
group have reported complex dynamical features of this transition (Lorensbdh985), made

by measuring the chemical potential differentg across a short (1 cm), narrow glass tube
(diameter 0.0134 cm). These measurements show that the vortex line deyaiitgve critical

is approximately proportional to the square of the driving counterflow velocity. At Tl there

is a dramatic increase in superfluid vortex density. This leads to the conjecture that the TI-TII
transition is caused by some instability in the normal fluid: indeed, what is the effect of the
tangle on the normal fluid itself? This question has been addressed by Melotte and Barenghi
(1998). The authors considered the stability of the normal fluid under increasing forcing due
to the tangle at ever increasing valued gfusing standard linear stability theory. The results

are quite dramatic as seen in figure 9. While the temperature dependence does not seem quite
right (the detailed situation is probably more complicated than that considered by the authors),
the fact that the magnitude is correct is really quite satisfying. The picture which emerges
from the calculations is that in state Tl the superfluid is turbulent, but the dehgitf the
superfluid vortex tangle is not sufficient to alter the laminar profile of the normal fluid. At
sufficiently large counterflow velocities a transition takes place and the normal fluid velocity
profile is destabilized. The linear theory cannot predict what will happen beyond critical, but
a good guess is that the normal fluid becomes turbulent. The TII state therefore corresponds
to turbulence in both superfluid and normal fluid components.
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Figure 9. Transition between Tl and TII states: comparison between theory and experiments.
TI-TII transition, full curve (Melotte and Barenghi 1998). Various experiments are indicated by
different symbols.

4.6. Simulations of counterflow turbulence

4.6.1. Methods of simulation. The dynamics of vortices in helium Il forms a particularly
attractive problem to simulate numerically. The equations of motion are well known and,
because of the microscopic core size, a thin vortex filament approximation is very good. One
needs to follow only a one-dimensional set of points moving in three-dimensional space, rather
than a three-dimensional set as in, for example, simulations of the Navier—Stokes equation.
In addition, Arms and Hama (1965) developed a simple local approximation to the vortex
line induced velocity which is discussed briefly below. Despite this attractiveness, significant
simulations of quantum turbulence have been carried out only by Schwarz (1978, 1982, 1983,
1985, 1988) at IBM over a number of years and more recently by Aarts and DeWaele (1994).

A useful generalization of the analytical vortex ring calculation in books such as Lamb
was obtained by Arms and Hama (1965). Its importance lies in making possible approximate
calculations of the motion of arbitrary configurations of very thin vortex lines. The fluid
velocity at some point in space, induced by a vortex line, is given by an exact analogy in
the theory of electromagnetism called the Biot—Savart law. In this analogy the fluid velocity
corresponds to the magnetic fieldl and vorticityw to the current density. The equation
o = curlv is analogous to Maxwell's equation cull = (4x/c)j. The integration is over all
of the vortex singularities in the fluid boundary effects are included by extending the integral
to the images of the singularities.

If an arbitrary segment of vortex line is parametrized as in figure 10, then the Biot—Savart
law can be written as

v = (k/4m) /(so —r)x dsg/|s — r|® (4.58)

wherer is any point in the fluid and the integral is over the relevant line segments=I&g
is a pointon the line, the integral in (4.58) diverges. If we expanih a Taylor series about
s0, s & 8o+ 8'& + 35"£2 and (4.58) becomes

v R (/c/47r)/(d§/2€)s’ x g’ (4.59)

where the integral is over the whole vortex array except for a distance of the order of the core
radiusa on either side ofg. Ignoring ‘non-local’ portions of the vortex (more than some
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distancelL away fromsg measured along the arc) and approximating the cross-product by its
value atsg, we get the local self-induced velocity

v; ~ (k/4m)In(L/a)s’ x s” (4.60)

wheres’ x s” has the magnitude/R, R being the radius of curvature &4.

increasing ¢

arbitrary
origin

Figure 10. A drawing of the parametric notation use to describe a vortex line tangle. The curved
line represents a vortex line with its position describes(&sr). The local tangent’ = &, where

£ is a unit vector along the vortex line in the directiorkofs” is the local curvature vector (whose
magnitude is 1R), and the binormad’ x s” is in the direction of the tangle-induced velocityand

also has the magnitud¢ R. The instantaneous velocity of the line is givemby= ds(&, 1) = s.

In scalar terms
vi & (k/4m)In(L/a). (4.61)

The choice of. to best approximate (4.58) depends on the details of the vortex configuration.
If we wish to include the ‘far field’ of the vortex we can make a rough approximation by

integrating (4.58) over the line omitting a region along the vortex of ledigti either side of

sp. Then

V(mon-local) = (K/47T)/ (SO - T') X d30/|8 - T|3 (462)

where the prime on the integral indicates that the local line element is omitted.

An immediate application of (4.61) is an intuitive understanding of how a vortex ring
moves through a fluid: iL is replaced byR we have an approximation to (4.58). A vortex
ring moves through the fluid principally because of its curvature. As an example a ring with
a = 1078 cm andR = 10-2 cm moves through the liquid at about 1 cmts A numerical
simulation was carried out in our laboratory using a mesh of 100 points on the circumference.
The localized induction, cut off at nearest neighbours from a selected origin, provided 73% of
the total induced velocity.

4.6.2. Major insights from the simulationsSchwarz (1978) has shown that the Arms—Hama
local induction approximation (hereafter referred to as the local approximation) is generally
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valid in quantum turbulence, but that there are some instances when the ‘far field’ becomes
important. These instances occur when previously distant portions of the tangle or the tangle
and its image approach more closely than a critical distance (Schwarz 1985). Thus vortex
simulations can be successfully broken down into two parts:

(i) alocal approximation which is generally valid;
(i) discrete events, line—line or line—boundary ‘crossings’, where the far field is significant.

With a local approximation, portions of the tangle with small radius of curvature or local
induced velocityv; opposite to the counterflow will evanesce due to mutual friction. Other
portions will grow and be annihilated at the walls. Thus vortex crossings are necessary to
keep a tangle self-sustaining, and the treatment of such crossings is crucial to a successful
simulation. In early work, Schwarz (1978) forced a randomization of the vortex configuration
in the vicinity of the crossing, which was costly in computer time, but allowed successful
simulations of steady-state flows without boundaries.

A second major insight from Schwarz's work (Schwarz 1982) is that one can replace
the configuration randomization with a simple ‘topology-changing reconnection’, with similar
results and a great increase in ease of implementation. Such reconnections are depicted in
figure 11. In recent work, Schwarz (1985) has shown that a reconnection is feasible, but
classical vortex dynamics breaks down as the distance of closest approach becomes of the
order of the core size, and one is left with a quantum mechanical problem. There is some
evidence (Schwarz 1982) that, in fact, a topology changing reconnection does not occur at
every crossing. What really happens at a crossing is a major unsolved problem in quantum
turbulence.

Probably the greatest lesson from Schwarz’s simulations is the success in reproducing
phenomena which has been achieved using the equations of vortex dynamics with several
simplifying assumptions. The counterflow was assumed to be uniform, as in state TIV (pure
superflow), the velocity dependencecoéndg (see equations (4.43) and (4.51)) was ignored
(eliminating the weak velocity dependencelaf/v?), « was ignored (valid except nedy),
and periodic boundary conditions were used (ensuring homogeneity of the line density).

In early simulations (Schwarz 1978), i.e. prior to implementing the reconnection ansatz,
boundaries were ignored and thus critical velocities were not reproduced. Nevertheless,
the success was quite remarkable. e dependence of., was reproduced (as scaling
arguments now show must happen). The mutual friction force and the line density were in
surprising guantitative agreement with experiment, well within the range of the rather scattered
experimental results of the time.

Implementation of the topology changing reconnection ansatz allowed boundaries to be
included through line—boundary reconnections (althoughremained uniform). With this
improvement, Schwarz (1983) was able to reproduygandu, 3, the first critical velocity in
small- and large-aspect-ratio channels. It is curious that the temperature dependence of the
critical velocity found by the simulations was much stronger thaiiBaehr and Tough 1985),
and indeed similar to that in counterflow. Awschaletal (1984) report new calculations
of y (smaller than those reported by Schwarz (1978)) which agree remarkably well with the
measurements gf, and with the most recent measurementg.p{Opatowsky and Tough
1981).

4.6.3. Vortex reconnections, results of the simulationhe idea of vortex reconnections was
first put forward by Feynman (1955) in his discussion of the decay of a vortex tangle into heat.
When two oppositely-directed bits of vortex line approach closely enough, one might speculate
that the reduction in the scale of the flow might cut off the circulation and hence allow the
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Figure 11. lllustration of (a) a possible reconnection sequence between vortex filaments in atangle,
(b) a vortex filament reconnection at a surface and (c) multiplication of singularities through the
reconnection process. Here two vortex lines reconnect to form five. After Schwarz (1988).

reconnection process to occur without violation of Kelvin's circulation theorem. This problem
has not been directly addressed, and is likely to be a difficult problem in quantum mechanics.
Some indirect evidence, however, exists. Jones and Roberts (1982) have made a study of the
Ginzburg—Pitaevskii equation for a family of vortex rings of steadily decreasing ratio of radius

to core size. They find that at a definite value of this quantity, the circulation disappears, and
the remnant of the vortex becomes solitary waves of compression. In the most recent paper
on motions in a Bose condensate, Joekeal (1986) have demonstrated by direct numerical
calculation the establishment of a vortex core and circulation in the evolution of the nonlinear
Schibdinger equation.

The Schwarz simulation has gone beyond the Feynman speculation in addressing the
problem of a self-sustaining tangle. In particular, he has shown that when bits of line approach
which are parallel in sense of circulation, the line can wrap around in such a way as to allow
reconnection to take place. The final resolution of the quantum mechanics is a challenging
problem, but at the present time it looks as if the necessary conceptual basis is given by the
Jones and Roberts calculation. The NLSE model has been used to demonstrate the existence of
reconnections (Koplik 1993) which are postulated in the vortex dynamics approach of Schwarz.

The results of Schwarz’s calculations are contained in his main paper on the subject
(Schwarz 1988). One interesting example is shown in figure 12, where the friction constant
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Figure 12. Comparison of the theoretically predicted mutual friction force coefficient with
experiment. After Schwarz (1988).

o = Bp,/2p is varied, not by changing temperature as is usual, but by changing the pressure.
Other examples of the success of the simulations are contained in figures 7 and 8.

There are many pictures of the vortex tangle in various publications. Probably the most
interesting are again in the 1988 paper by Schwarz.

The total experience gained from vortex simulations has allowed Schwarz to give us a
graphic picture of the way a tangle of vortex lines is sustained:

‘The self-induced velocity causes a complicated three-dimensional internal motion of the
vortex tangle, the whole thing being washed along by any applied superflowfigltlich
may be present. Highly curved sections of line, and sections propagating opposjte to
decay. Simultaneously, other parts of the vortex tangle where the self-induced motion is being
overtaken by the, field grow by ballooning outwards. The cross-steam nature of the vortex
growth implies that in the steady state at least a certain fraction of the singularities is constantly
being driven toward the walls. The line-line reconnections which occur as the vortex tangle
undergoes its complicated dance play several important roles. First, they provide a mechanism
by which new vortex singularities can be created (figure 11), allowing the vortex tangle to be
established and sustained against the loss of singularities at the walls. Secondly, and more
subtly, since the vortex amplification process is essentially a two-dimensional outward motion
inthe plane perpendiculartg,, the reconnections and the subsequent motions ajgmnghich
result are necessary to maintain the three-dimensional random nature of the vortex tangle.
Finally, the reconnections occur more often as the tangle becomes denser. The increasing
frictional line loss associated with the creation of a more and more highly curved vortex tangle
is the factor which eventually limits the tangle density. All of these complicated dynamical
features interact self-consistently to produce the turbulent steady state.’

4.6.4. Self-consistent turbulenceThe drawback of Schwarz’s vortex dynamics approach is
that it is essentiallkinematicin character: the driving fields, and v, are imposed at the
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beginning of the numerical calculation and never change. This limitation is present in all work
published until recently. For example, when studying counterflow turbulence, Schwarz set
v, — vy equal to a constant, proportional to the driving heat flux. Choicas ofed in the
literature range from uniform flows in periodic boxes or channels, Poiseuille flows, a single
vortex tube and Arnold—Baltrami—Childress (ABC) flows. In each case the shape of the profile
of v, was fixed.

The difficulty of kinematic models becomes apparent, when viscous flows of the normal
fluid with boundaries are studied, such as channel flows. On one hand, it can be argued that
v, should have a parabolic Poiseuille profile to satisfy the no-slip boundary conditions at the
wall; on the other hand, one can also argue that the parabolic profile becomes so flattened by
the friction with the superfluid vortex tangle that a uniform profile may be a better choice.
Aarts and DeWaele (1994) tested both these profiles and, not too surprisingly, they found that
the vortex tangle looks very differentif, is parabolic rather than uniform.

The same difficulty appears when one tries to determine the normal fluid flow as a function
of a fixed tangle rather tharice versa This was attempted by Melotte and Barenghi (1998)
as described in section 4.5.13, who studied the linear stability ohder the forcing of an
imposed homogeneous and isotropic vortex tangle. Their calculation showed that if the vortex
tangle exceeds a critical density the Poiseuille profile becomes unstable and possibly turbulent,
a transition which would clearly change the vortex tangle itself.

In a recent paper Barenghi and Samuels (1999) showed how to overcome the difficulty of
the kinematic approach. They proposed a new, dynamisalfyconsistenapproach, which
takes into accountthe back-reaction of the vortex tangle onto the normal fluid. The idea consists
in letting the normal fluid evolve alongside the tangle of superfluid vortex lines, according to
its own equation of motion. In this way the vortex tangle and the normal fluid profile determine
each other in a dynamically self-consistent fashion. For example, in the channel flow problem
studied by Aarts and DeWaele, the calculation would start as usual with few superfluid vortex
lines to act as seed, while the normal fluid would be initially in the correct parabolic profile to
satisfy the boundary conditions; as the vortex tangle develops, the back reaction of the tangle
onto v, via friction would increase, changing the parabolic profilegf In this way, if the
friction is large enoughy, may become distorted, flattened or even turbulent, as argued by
Melotte and Barenghi (1998) in the context of heat transfer flow.

To implement the new approach they considered the equation of the normal fluid,
which they assumed isothermal and incompressible for simplicity. Neglecting any externally
applied superfluid potential flow, this equation is the Navier—Stokes equation modified by the
introduction of the friction force,

v,
Pn Y

+ pn(vn : V)'Un = _&VP + nvzvn + Fy, (463)
0

whereP is the pressure. Equation (4.63) must be solved together with the continuity equation
V - v, = 0. The friction force per unit volume at a given point is

B 1
_ 0Pnls = [ g [s' x (v, — vy —v;)]dE (4.64)

Fns
20V

where the integration is performed over the vortex lines in the voldraeound that particular
point. Note that until now the calculation of the friction has been attempted for diagnostic
reasons only, in the context of kinematic models.

The self-consistent approach consists therefore in determining the evolution of the vortex
tangle for a given, (as done by Schwarz), while at the same time determinjrigtom (4.63)
and (4.64).
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Barenghi and Samuels (1999) implemented this new approach in a calculation of the
decay of a model of normal fluid eddy coupled to a decaying vortex tangle. Their calculation
was rather idealized because it was performed in a periodic box of. §lie the ABC flow
calculation of Barenglet al (1997)) and the normal fluid was only two-dimensional. Barenghi
and Samuels found that after an eventual initial rise (which depends on the relative energies
contained in the normal fluid and superfluid initial condition) the energy of the normal fluid
eddy decays with the behaviour® independently of temperature, wherés time scaled
with the kinematic viscosity of the total helium density= n/ o rather tharn,, = n/p,. This
uniform value of the decay constant is at first surprising: how does the normal fluid know about
thetotal helium density? Note that the temperature range covered by the results corresponds
to a normal fluid fractionp, /o which varies between 99% & = 2.171 K to only 56% at
T = 2.0 K. In the absence of a tangle the energy of the normal ABC flow should decay
exponentially with time scale based on

The interpretation of the data is that the coupling between the normal fluid and the tangle
is strong enough to compensate for the changing relative proportion of normal fluid. Although
the model is too idealized to make a direct quantitative comparison with the experiments, the
resultis consistent with the observation by Stalp (1998) that the decay rate of helium turbulence
is independent of temperature (see section 4.8.2).

4.7. Co-flows and vortex coupled superfluidity

4.7.1. Periodic boundary layer experimentsThe damping of oscillating disks in liquid
helium was originally studied in the 1930s in order to determine the viscosity. After World
War Il, experiments by Andronikashvili (1946), Hollis Hallet (1955), Benson and Hollis Hallett
(1956) and Donnelly and Penrose (1956) have shown that oscillation experiments can also be
used to study the hydrodynamics of helium II.

The damping of oscillations in helium Il may be conveniently discussed in three different
ranges of amplitude. At low amplitudes the experimental data are consistent with a linearized
set of two-fluid equations which neglect the effect of mutual friction. At higher amplitudes the
normal and superfluid components move together and the results are consistent with a single
equation, the Navier—Stokes equation. There is sometimes a quite sudden rise in damping
observed between these amplitude ranges which corresponds not to a large change in the
viscosity of the liquid, but to a radical change in the hydrodynamic flow pattern. Atthe highest
amplitudes turbulence is observed in both helium | and helium II.

In the case in which the normal and superfluid components move together a kinematic
viscosity can be defined representing the ratio of the viscosity to the total density of the liquid.
These experiments were the first to show convincingly that the two fluid equations of motion
for helium Il are not applicable to flows with suitably defined Reynolds numbers greater than
order 100. Indeed these experiments raise the question as to whether helium Il might be used
as a means to study classical turbulence.

The transition to ‘turbulence’ shown in figure 13 is probably not really turbulence in the
accepted sense. In particular, for the oscillating sphere, a stability theory by Otto (1992) has
now appeared. A preliminary phase diagram has been established showing an appropriately
defined Taylor number versu®/s, whereR is the radius of the sphere addthe viscous
penetration depth. The onset of instability against Taylor vortices in an unpublished experiment
in water agrees reasonably with the theory of Otto, and shows that the first departure from
stability is the formation of Taylor vortices at the equator. Thus we are gaining an understanding
of periodic boundary layer experiments in ordinary fluids and perhaps can soon return to the
explanation of the first critical velocity.
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Figure 13. The variation with amplitude of the damping of gravity oscillations of liquid helium in
a U-tube at a period of 0.94 s. After Donnelly and Hollis Hallett (1958).

4.7.2. Vortex coupled superfluidityBecause the flow of helium Il is described by the two-
fluid model, it is certainly not, at first sight, a conventional Navier—Stokes fluid. It is not
clear that turbulence in helium Il should behave as does classical turbulence. For instance,
as discussed in section 4.5 above, when heat is applied at the end of a closed channel a
counterflow turbulent state can be generated which is not achievable in classical flows. In a
number of isothermal situations, such as the periodic boundary layer experiments discussed
above, it is found experimentally that the two fluids couple together behaving in many ways
like a classical Navier—Stokes fluid (Donnelly 1991a, b). This coupling of the fluids which we
refer to asvortex-coupled superfluidifg the subject of the rest of this section. It is important
to note that we are not referring to a perfect coupling. Such is clearly impossible since the
normal fluid is thought of as having continuously distributed vorticity, while the superfluid
has discrete quantized vortices. Instead we envision a coupling length Seatger than the
distance between the lindsput smaller than other physically relevant length scalelat is
| < I. < A. Evidence for the coupling is found in both experiment and scaling arguments.
Early experiments which revealed the classical behaviour of helium Il at high Reynolds
number studied the drag coefficient of a sphere: Dowtet (1961) and Laing and Rorschach
(1961). It was found that the drag coefficient is not markedly different in helium | than in
helium II. More recently, experiments have examined both pump performance and pressure
drops in flow through smooth and rough pipes using helium Il (Walsiebad 1988). The
pressure drops scale well with the classical results, from which we infer that the velocity
profiles also scale, hamely that a thin viscous sub-layer which generates the pressure drop

forms near the wall. The pump performance in helium Il is also identical to that in
helium I.
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In Taylor—Couette flow Bielert and Stamm (1994) investigated high Reynolds numbers
(Re ~ 40 Re.). They used a method of flow visualization in helium based on small tracing
particles by which they could examine pattern formation. They saw that in this turbulent regime
the Taylor rolls have wavelength approximately equal to the gap’s size, which is identical to
the classical case.

4.7.3. Decay of superfluid turbulence Evidence on coupled flows can also be found
in experiments on vortex decay. Schwarz and Rozen (1991) have investigated the decay
of superfluidvorticity generated by counterflow. In counterflow turbulence, a very large
superfluid vorticity is generated due to the relative velocities between the two fluids. The
normal fluid vorticity, however, is much less robust. The initial decay of the superfluid
vorticity is well described by vortex-tangle theory (section 4.5.2), but this initial period is
followed by a period of slower decay not obeying the expected scaling laws. The slow decay is
interpreted by Schwarz and Rozen as follows: ‘The superfluid vorticity decays to a level equal
to the normal fluid vorticity. The normal fluid vorticity meanwhile is decaying slowly through
viscous dissipation in accordance with classical turbulent scaling laws. Instead of decaying
to zero, the superfluid vorticity is maintained by eddies in the normal fluid. The normal fluid
vorticity maintains the superfluid vorticity, and thus the fluids are coupled.’

Another hint is contained in section 4.8.3 where there is some experimental evidence that,
at long times, the counterflow-created turbulence decays like a classical fluid.

4.7.4. Turbulentflow over a sphereOne characteristic of classical turbulent flow is evidenced

by the celebrated relationship between drag coefficient and Reynolds number for flow about
a sphere. At a Reynolds number of abou? tifere is a sudden fall in the drag coefficient
which has been known for decades. The question of whether that fall exists in helium | and
helium Il was firsttaken up by Laing and Rorschach (1961) with somewhat inconclusive results.
Recently Smitket al (1999) have built an apparatus which establishes the drag on the sphere
by direct measurement of the pressure distribution as shown in figure 14. The distributions of
pressure are shown in figure 15 in helium Il and results in helium | are very similar. The drag
coefficient as a function of Reynolds number is shown in figure 16 and clearly indicate the drag
crisis is present in both helium | and helium II. This is a first report on an ongoing study which
will extend measurements in both Reynolds number range and temperature in helium I1.

Figure 14. Pressure distribution device designed by Sreitlal (1999). A single pressure tap is
used to map out the pressure profile over the meridian shown by the dashed line on the sphere. The
pressure signal is sent to a sensor through one of the support struts.

4.7.5. Vortex tubes. Akey observation to model turbulent helium Il was first made by Samuels
(1992) that the presence of normal fluid vorticity has a significant effect on superfluid vortex
lines. In most experiments under consideration the Reynolds number is high and the normal
fluid must be turbulent. It is known from the observations and from the numerical simulations
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Figure 15. Pressure distribution for various Reynolds numbers at 1.8 K in helium Il. The long and
short dashed curves correspondiio= 1.1 x 10° and 13 x 1CP, respectively. Others range from
Re = 1.7 x 10°t0 9.6 x 10°. The situation in helium I is much the same. After Snitial (1999).
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Figure 16. Drag coefficient as a function of Reynolds number. The open squares and crosses

correspond to temperatures 2.54 K and 4.2 K, respectively. The triangles were recorded at 1.8 K.
The full curve is the accepted classical result and the dashed curve shows the effect of a surface
roughness of 0.0015. After Smitt al (1999).

of classical turbulence (for example, Skeal 1990) that regions of intense concentrated
vorticity appear in the flow, move about and disappear after a certain time. We expect that
the normal fluid has similar regions of concentrated vorticity. To model these vortex tubes,
Barenghiet al (1997) chose an ABC flow. Using Cartesian coordinates (z) the normal

fluid velocity v, has components given by

u, = Asin(2rz/1) + C cog2ry/A)
v, = Bsin(2rx/A) + Aco2mz/A) (4.65)
w, = Csin2ry/\) + Bcog2rx/)\)

wherex is a length scale and, B andC are parameters. ABC flows are solutions of the steady
Euler equation and of the time-dependent, forced Navier—Stokes equation. Despite the apparent
simplicity, the streamlines have a complex Lagrangian pattern which includes a chaotic particle
path at certain values of parameters (Domdtral 1986). ABC flows have also been used to
study turbulent processes of dynamo action in magneto-hydrodynamics (@ikzrt993,
Galloway and Proctor 1992). Finally, ABC flows have non-zero helicity, a property which
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has been associated with turbulence structures both in experiments and numerical simulation
(Moffat and Tsinobar 1992).

The numerical simulation calculated the time evolution of an arbitrary initial superfluid
vortex configuration in the presence of a driving normal ABC flow. The calculation was
performed inside a three-dimensional periodic box of &iz&ypically the calculation started
with an initial superfluid vortex ring. Under the influence of the normal flow, the ring became
unstable and distorted, the total length of the vortex line increased and a vortex tangle developed,
as showed in the time sequence of figure 17.

TrT—<"w ® ©
3 (@) % (e) % ®

Figure 17. Time evolution of a single vortex ring in a normal fluid ABC flow. The calculation is
performed in an infinite volume, without using periodic boundary conditions.

The physical mechanism underlying this process is the instability of a superfluid vortex
line to the growth of helical vortex waves (Kelvin waves), which is illustrated in figure 18.

vnT A,

(@) (b) ©

Figure 18. The Donnelly—Glaberson instability of a quantized vortex line which occurs if a normal
fluid flow has a component parallel to the core of the line.

The instability occurs if the component of the normal fluid velocity in the direction parallel
to the vortex line exceeds a critical value, as discovered by the Donnelly group and explained
by the Glaberson group (Chergg al 1973, Ostermeier and Glaberson 1975). As vortex
waves become unstable and grow, more line length is created, hence more vortex line length
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undergoes the same instability, and so on, until nonlinear effects saturate the growth. Barenghi
et al noticed that the instability generates bundles of superfluid vortex lines which, driven by
mutual friction, concentrate in the regions where the vorticity of the ABC normal fluid is high,
see figure 19.

Figure 19. A more organized vortex tangle arising from operation of the vortex line instability.
This calculation is done in a periodic box. After Barenghal (1997).

Although themicroscopicsuperfluid velocity pattern in the bundles is very complicated,
its macroscopi@veragev, over a region larger than the intervortex separation is similar to the
vorticity field w, of the normal fluid. Thisorticity matchings consistentwith the observations.
Numerical investigation of the growth time scale for the vortex lines showed that it is of the
same order of the ABC flow time scale; since the lifetime of the vortex tubes observed in
turbulence is of the order of few turnover times, there is enough time for the matching process
to take place.

Although the ABC model is too simple to make direct quantitative comparison with the
experiments, it confirms the locking mechanism which has been postulated to explain the
experiments and provides a physical explanation for this mechanism.

4.7.6. A damping length scale for superfluid turbulencBamuels and Kivotides, in a recent
preprint, have proposed that a damping length stalean be defined for superfluid turbulence

at non-zero temperatures, where the superfluid is coupled by mutual friction to the viscous
normal fluid. Superfluid vortex structures (waves or rings) at length scales smallet,than

will lose energy to the normal fluid and will be dissipated. They derive the Reynolds number
dependence of this dissipation length scale and discuss the consequences of this length scale for
the possible existence of a Kolmogore®,/3 power law for the superfluid excitation spectrum.

From the Donnelly—Glaberson instability the authors define a length scale

K E.&'d
Loy = In{ — 4.66
d 2V iyp (27m) ( )

wherex is the quantum of circulationV, ;,, is some typical large velocity scale of the
normal fluid anda is the superfluid vortex core radius. Superfluid vortex structures at
length scales smaller thaty), will lose energy irreversibly to the normal fluid (where the
energy will be dissipated to heat). Thus this length scale acts as a damping length scale
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for the superfluid turbulence and simulations suggest it corresponds to the smallest radii of
curvature in the superfluid vortex tangle. For a wide range of normal fluid Reynolds numbers
(100 < Re < 10') the length scalé,, is within a factor of 10 of the normal fluid Kolmogorov
lengthn. They discuss conditions under which the existence of this dissipation length scale
for the superfluid leads to a Kolmogorexb/3 energy spectrum. This5/3 law would occur
withoutthe need for velocity matching between the superfluid and normal fluid.

4.8. Towed grid turbulence

4.8.1. The towed grid techniqueThe decay of homogeneous and isotropic turbulence (HIT)
is regarded as one of the fundamental problems of fluid dynamics. Experiments on HIT are
usually performed in wind tunnels that study grid-generated turbulence as it decays downstream
(Batchelor 1953). A novel technique where turbulence is created by towing a grid through a
stationary sample of helium Il was first reported in Sndtlal (1993). The authors analysed
the decaying root-mean-square superfluid vorticity over a time spanfreto 5 swhere the
energy containing length scale was assumed constant.

This technique has been improved in several ways in the past few years, allowing
measurement of the rms superfluid vorticity over the rangeX® to ~1 Hz. The apparatus
is illustrated in figure 20. We define the superfluid vorticity«a@) = « L, wherek is the
quantum of circulation and is the length of quantized vortex line per unit volume obtained
from measurement of the attenuation of second sound using a newly developed model suitable
for arbitrary levels of attenuation (Stalp 1998). This definition is not free of problems and is
still a matter of current research

Stalp (1998) has achieved mesh Reynolds numbers as high by fidving a grid (mesh
size M = 0.167 cm), with grid towing velocity (5 cms < V, < 200 cm s?), in a
1 x 1 x 56 cn? channel. Observation of the turbulent decay over three orders of magnitude in
time is equivalent to over fanesh lengths down a classical wind tunnel, making this system
unigue in the study of turbulence.

4.8.2. Decay of turbulence behind a towed gridAs explained in section 4.7.2 above, the
normal fluid vorticity is assumed comparable to the observed vorticity of the superfluid, and
the effective density is equal to the total fluid dengityin accord with this expectation, Stalp
(1998) observed no appreciable difference in turbulent decays obtained over a temperature
range of 14 K < T < 2.15 K, which corresponds to an order of magnitude difference in the
normal density rati@, /p. The decay is therefore analysed in terms of classical HIT. A model
which attempts to describe the decay is presented in 8tap(1999). The essence of their
model is shown in the assumed energy spectrum shown in figure 21. It is generally accepted
that for small wavenumbers the total turbulent energy spectrum is of the E¢kn= Ak™;

with the usual choicen = 2. For large wavenumbers they use Kolmogorov’s prediction
E(k) = C&?*k=53, whereC is the (dimensionless) Kolmogorov constant of order unity
ande = —dE/dt. These two wavenumber regions meekdat) = 2x/1.(t), where this

peak in the energy spectrum corresponds to the energy containing eddy length gtale
around which most of the turbulent energy resides. At largihe spectrum is truncated at

the Kolmogorov wavenumbef, due to viscous dissipation. A novel aspect of their model

is that at small wavenumbers the spectrum is truncatég at 2w /d owing to the size of

the container. The energy-containing length scale grows until it saturates at the size of the
container at time = ¢, as shown in figure 21. These assumptions allow a straightforward
analysis to be developed giving the form of the vorticity decay for all times as shown by the
dashed curves in figure 22.
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Figure 20. Schematic of experimental apparatus for towed grid experiments. An earlier version
of this apparatus had provision to put a heater at the bottom of the channel to induce counterflow
turbulence.

Typical experimental data taken &t= 1.5 K, for grid velocities of 5, 10, 50, 100 and
200 cm s, are shown as full curves in figure 22. The plotted vorticity represents the rms
superfluid vorticity averaged across the detecting volume of about®1 Artime r = 0 the
grid passes a predetermined reference position located 7 mm above the middle of the detecting
volume. The arbitrary reference position introduces a grid-velocity-dependent virtual origin
that slightly affects the decay slope for times ¢,. The individual decay curves possess a
pronounced feature (see the arrows in figure 22) which is defined as the saturation,time,
so that the vorticity begins to decay as$f) o t~%/2. The authors believe this corresponds to
the saturation of the energy-containing length scale at the size of the channel. They do not
observe any appreciable departure from the asymptotic de@ayx r~%2 down to the level
of afew hertz. The modelleads to an experimental value of the three-dimensional Kolmogorov
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Figure 21. Schematic energy spectrum in developed HIT in a finite channel. After Stadp
(1999).
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Figure 22. Decay of vorticity for grid velocities of 5, 10, 50, 100 and 200 cm &op solid curve)
at 1.5 K. Dashed curves are from the model. The arrows indicate the time the energy-containing
eddies reach the size of the container. After Sédlpl (1999).

constantC = 1.3+ 0.2. The fact that the experimental decay curves coincide at sufficiently
long times demonstrates the independencé€ dfom Re; (the Taylor microscale Reynolds

number as defined below).
Values of these parameters of the model are derived for each grid velocity and the dashed
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curves in figure 22 represent the associated theoretical decay curves calculated from the model.
The results show that the initial energy containing length stales typically only a few times
smaller than the size of the channel.

The microscale Reynolds number is calculate@as= /1523y ~1/3,1/3 (Stalp 1998).
A vorticity of 1 Hz corresponds t®e; ~ 85. No appreciable variation ifi over a wide range
of Re; confirms that the Kolmogorov constant is independenRef and extends th&e;
range from about 550 to over 10

Log, (time)

Figure 23. An illustration of the dramatic differences in decay of two turbulent flows of the
same initial vorticity produced by a counterflow (upper curve) and towed grid (lower curve). The
experimental channel was identical in both cases except the grid was removed for the counterflow
experiment. The form of the upper curve has been discussed by Schwarz and Rozen (1991) and
by Smith (1992). The decay curves coincide at long times and correspond exactly to the decay of
classical turbulence.

4.8.3. Comparison between towed grid and counterflow turbulenteis interesting to
compare the turbulence created by counterflow in helium Il and turbulence created by a towed
gridin helium Il (see figure 23). Simulations tell us that there are really only three scales in the
counterflow experiment: the vortex core diameter, the average interline spacing and the size of
the channel. There is no evidence of a cascade in the steady state. On the other hand, there is
ample evidence of a cascade in towed grid turbulence, and that cascade persists throughout most
of the decay period. It is interesting that at short times the decay of counterflow turbulence

is radically different than towed grid turbulence. At long times the counterflow turbulence
decay is seen to coincide exactly with the decay of towed grid turbulence starting from the
same initial vorticity. It may be, then, that after some time, decaying counterflow turbulence
tends to create a vortex cascade.
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Figure 24. Typical averaged signal for the oscillating grid. The three values ititistrate the
effect of varyingx on arrival time and steady staig,,;.

4.9. Oscillating grid turbulence

There has been a good deal of interest in the turbulence generated by an oscillating grid either
in water or in a stratified fluid. In an influential paper, Dickinson and Long (1978) make a
strong case for a turbulent front propagating continuously and covering a distance proportional
to the square root of the elapsed time using an oscillating grid in a water tank. We set out
to investigate this motion in helium Il and subsequently performed a number of qualitative
experiments in water. The helium Il investigations were carried out by Smith (1992) and form
part of his thesis, the results in water are as yet unpublished.

The experimental protocol was to place the grid initially at some distantem the
detector, and at time = 0 begin driving the grid up and down. The arrival time of the
turbulent front was measured as a function of the stroke peak-to-peak amplitfdeciency
f and distance.

A triangular waveform for the oscillations was selected since the stepper motor control
restricted us to this waveform for technical reasons. Subsequent water experiments used a
four-bar linkage to produce a sinusoidal motion.

Atypical averaged signal in helium Il is illustrated in figure 24 for three different values of
x. The sharp leading edge suggests a well defined front, certainly not diffusive in appearance.
Smith was able to extract two quantities from his data: the arrival time of the front and the
steady-state vorticity.

Figure 25(a) plots the arrival of the disturbance agairistthe form:%4% versus, for an
oscillating frequency and stroke of 3.75 Hz and 2.5 cm, respectively. This best fit to the data
was determined as before, although the method here was particularly insensitive to smaller
exponents. Thisis illustrated by the plot8f33versusc shown in figure 25(b), which appears
much the same as that of figure 25(a). These results then are far from conclusive. Moreover,
other difficulties have arisen as we shall see next.

Finally, Smith measured the steady-state vorticity plotted in figure 26 as a function of
distance away from the oscillating grid. The results suggest that the front does not propagate
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Figure 25. Position versus averaged arrival time for the oscillating grid. The best fit shown in
(a) corresponds to ~ 2435 but (b) clearly indicates that ~ 9333 behaviour cannot be ruled
out.

further than about 5 cm. This interesting result is in contradiction to the diffusive propagation
of turbulence and motivated us to build an oscillating grid apparatus in watergi-#999).

The water tank was constructed of Lucite and is 4 feet tall. Its cross section is square, 22 cmon
side. The grid was driven by a stepping motor and four-bar linkage so a to obtain a sinusoidal
stroke. While the details will be reported elsewhere, we found that the turbulent front does not
propagate down the entire tank, but stops at a depth of the order of the width of the tank. Indeed,
various diameter tubes were inserted in the tank, and the depth of propagation was observed
as a function of the tube size. These very preliminary results suggest that the oscillating grid
experiments do not follow the predictions of Dickinson and Long, and that such experiments
form a rich subject matter which merits careful study in the future.

4.10. The Barenblatt burst

Barenblatt (1983) considered the behaviour of a turbulent layer initially confined to a region
between planes at = +a as shown in figure 27. Barenblatt predicted th@) = x(¢) — a,
the distance from the initial front, should be given by

h(t) =~ Q13?3 (4.67)
where( is the energy contained in the burstat 0,

0= ' q(x,0)dx (4.68)

—a

whereq(x, t) is the mean kinetic energy density of the flow per unit mass.
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Figure 26. Steady-state vorticity for the oscillating grid in helium Il as a function of distance
(Smith 1992). We see that the turbulent front does not travel beyond about 5 cm. This behaviour is
also seen in our unpublished oscillating grid water experiments, where the front propagates down
the tank for a finite distance and stops.

Figure 27. Barenblatt’s problem: at= 0 turbulence is confined to a layer extending from —a
tox = a. After a timer the fronts have propagated a distanc¢e from the initial location of the
layer.

Michael Smith has investigated this problem at Oregon in helium Il by positioning the grid
at various distancefs above one of the second sound transducer pairs as shown in figure 20.
At ¢+ = 0 the grid is pulled upwards to the top of the channel at velocHigtypically from 20
to 100 cm s*. In this way he created experimentally a layer of turbulence extending from the
initial position of the grid to the top of the channel. Smith further assumed that this creates a
single, sharp turbulent boundary, which will then spread downward to the collector below. He
did indeed observe a distinct pulse arriving at the collector, which is shown in figure 28. The
foot and peak of this pulse appear to travel together, although there is quite a spread in arrival
times, forcing a reliance on large numbers of runs for good statistics. The cause of the spread
is not yet understood.
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Figure 28. Theoretical (a) and observed (b) turbulent bursts. The theoretical curve is given by
Chen and Goldenfeld (1992) and the experimental one is the result of many averages. In both cases
x = 1.137 cm andv = 50 cm s (Smith 1992).

It is not clearQ what should be for this experiment. The method of setting up the flow
does not give any centre-of-mass motion to the fluid. The energy given to the fluid should
just be the work done on the fluid, which is the force times the displacement of the grid. The
simplest assumption is a linear relation which suggésshiould scale as the grid velocit.

Barenblatt's analysis says the timeecessary for the peak of the burst to travel a particular
distanceh depends orQ as

{~ Q12 (4.69)

Results of arrival time as a function of grid towing velocityare shown in figure 29.
The exponenbd used in the fit is obtained by calculating the variance in the fit as shown in
figure 29(b) and has the value 0.5028 suggesting stronghyGhtpends linearly upoW.

The dependence d@f upont is given by the data in figure 30. Here we have positioned
the grid at different distancesfrom the detector and have observed the arrival of the peak.
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Figure 29. (a) Fit of arrival time as a function of towing velocity for a fixed initial position of 1 cm.
The vertical bar is the standard deviation corresponding to the minimum variance in (b) (Smith
1992). (b) Variance in arrival time for the data in (a) as a function of the exp@n@rhith 1992).

A simple way to display this result is to pla8/2) log 4 (¢) against log. If Barenblatt is
right, the data should have a slope of 1. The best fit of our data is shown in figure 31, and has
a slope of {1.028), showing impressive support for Barenblatt’s prediction.
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Figure 30. Fit of arrival time as a function of grid position for fixed towing velocity. The distance

h is determined by a stepper motor, with 1000 steps approximately corresponding to 1 cm. The
vertical bar is the standard deviation corresponding to the minimum variance in figure 29(b) (Smith
1992).
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Figure 31. Plot of (3/2) log i (¢) against. The straight line is the best fit to Smith’s data and has
a slope 0f~1.028 (Smith 1992).

In a recent preprint Chen and Goldenfeld (1992) have re-examined Barenblatt’s problem
and have predicted that the dependenc @on: is not quiter?2. Indeed they suggest that

h(t) ~ (QY?1) @9~ (4.70)
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whereg is an ‘anomalous dimension’ depending on the dissipation. Smith (1992) made an
attempt to determing from his data, but it is clear that this interesting result would benefit
greatly from improvements to the sensitivity of our apparatus.

4.11. Turbulence at absolute zero

At temperatures low enough that the normal fluid fraction is negligible a convenient
mathematical description of the superfluid is given by the nonlineard8aiger equation
(NLSE), which describes a container 8f bosons interacting via a delta function repulsive
potential of strengttv,,

72
(A
ot 2m
whereE is the energy per unit mass and the wavefuncids normalized by/ d®x |y)2 = N.
Equation (4.72) is not an exact description of superfluidity: it neglects the condensate’s
depletion and the existence of rotons in the dispersion relation. Nevertheless, itis a convenient
tool since it captures some of the essential physics, for example it has vortex line solutions.
Writing ¢ in terms of an amplitude and a phase

v =Aél (4.72)

one hasp, = mA? andv, = (i/m)VF. If we let F = ¢ in cylindrical coordinatesr, ¢, z)
then we obtain Feynman'’s vortex line

v = ——3 (4.73)

2nr

where¢ is the unit vector in the direction, together with a differential equation far. The
solution of this equation tends to the bulk density vatye— m?E /v, for r — oo and to
zero on the vortex axis; — 0 forr — 0. The characteristic distance over whijghchanges
is =10-8 cm, and is called the ‘vortex core’ parameter. We conclude that the vortex core is
effectively hollow, that there is no singularity at— 0 (the velocity diverges but the density
tends to zero so that the momentum is finite) and Yhat v, = 0 sinceu; is the gradient of a
phase, as envisaged by Landau.

The NLSE model has been used to demonstrate the existence of reconnections (Koplik
1993) which are postulated in the vortex dynamics approach of Schwarz. The NLSE has
also been used to study turbulence tangles by Mdral (1996). They made two major
observations: the firstis that the energy spectrum of the tangle has an inertial range compatible
with the classical-5/3 law of Kolmogorov. The second is that as the tangle evolves, there is
a significant transformation of kinematic energy into compressible sound energy. This second
finding has lead Samuels and Barenghi (1998) to investigate the thermodynamic implications
and to speculate that the production of sound is the fundamental process of dissipation of
kinetic energy af” = 0.

On the experimental side, vortex tangles at very low temperatures are being studied at
Lancaster University at temperatures around 70 mK.

A very recent approach, described in a recent preprint from Vinen (1999), is not based on
the NLSE. Itis based simply on the idea of vortex lines, which can reconnect, without looking
at the detailed microscopic description of reconnection. It asks how energy can be lost from
the tangle af” = 0 and at very low temperatures. It suggests that energy is fed into a cascade
formed from Kelvin waves on the lines, with energy flowing into Kelvin waves of shorter and
shorter wavelengths, like a kind of Kolmogorov cascade. Energy is ultimately lost from short-
wavelength Kelvin waves, either by radiation of sound, at the very lowest temperatures, or

V2 —mEY + Voy [§|? (4.71)
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by frictional interaction with the residual normal fluid at slightly higher temperatures. Kelvin
waves play a role only at very low temperatures: at higher temperatures the Kelvin waves of all
relevant wavelengths are too strongly damped by mutual friction. These details lead to fairly
clear predictions, which for the most part remain to be tested.

5. Conclusions, influence of Vinen on turbulence research

Looking back on research on turbulence since World War Il, we can see more clearly than
in times past the sweep of ideas and experiments. Immediately after the war there was
a truly great era of turbulence research at Cambridge, building on the ideas and genius of
G | Taylor, his associateG K Batchelor and A Townsend, and their research groups. There
was also an appreciation of the enormous vigor and accomplishments of Soviet scientists such
as Kapitza, Landau, Lifshitz, Khalatnikov, Ginzburg, Kolmogorov and others who considered
fluid mechanics one of the greatest challenges in physics. Indeed, if | recall correctly, David
Shoenberg was influential in getting early translation (by Michael Priestley) of Khalatnikov’s
important papers to the west. Henry and Joe made incredible progress in understanding the
phenomenology of helium Il (Vinen 1957a, b, ¢, 1958, Hall and Vinen 1956a, b, 1961a, b, Hall
1958).

The importantthing to realize is that Vinen put his principal effort into a study of turbulence
in helium Il, at a time when turbulence was being completely neglected by physicists. Building
on research at Leiden, supplemented by his own experiments and deep intuition, Vinen was
able to give an account of the growth, equilibrium and decay of counterflow turbulence, which
is still the generally accepted picture. And as | noted in section 4.2.1 it is clear that Joe and
Henry were on their way to discovering quantized vortices experimentally when the theory of
Onsager and Feynman first appeared.

Another remarkable achievement of Vinen was the introduction of the fluctuation theory
of vortex nucleation (see Donnelly 1991b, ch 8). While this topic has not been part of the
present discussion, it does not seem to be generally recognized that what is called the ILF (for
lordanskii, Langer and Fisher) theory of nucleation was actually first discussed by Vinen at
the famous Enrico Fermi summer school held at Varenna in 1961 (Vinen 1961a).

Counterflow turbulence, the principle topic of the past half century, has really only three
scales: the size of the apparatus, the intervortex spacing and the vortex core parameter. For
that reason, among others, the understanding of this flow has proceeded relatively quickly.
Fully aware of this fact, Vinen urged our laboratory to begin work on the towed grid apparatus,
which generates a full spectrum of turbulent eddies and has been so productive for us over the
years.

Never one to be idle, Joe has spent the past several years thinking about the decay of
superfluid turbulence at and near absolute zero. The first fruits of this thinking are briefly
described in section 4.11. As is usual when Vinen is around, my laboratory is buzzing with
activity.
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